Skip to main content
Log in

Natural Convection Non-Newtonian EMHD Dissipative Flow Through a Microchannel Containing a Non-Darcy Porous Medium: Homotopy Perturbation Method Study

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

Non-Newtonian thermal processing in microchannel systems, is emerging as a major area of interest in modern thermal engineering. Motivated by these developments, in the current paper, a mathematical model is developed for laminar, steady state fully developed viscoelastic natural convection electro-magnetohydrodynamic (EMHD) flow in a microchannel containing a porous medium. Transverse magnetic field and axial electrical field are considered. A modified Darcy–Brinkman–Forchheimer model is deployed for porous media effects. Viscous dissipation and Joule heating effects are included. The primitive conservation equations are rendered into dimensionless coupled ordinary differential equations with associated boundary conditions. The nonlinear ordinary differential boundary value problem is then solved using He’s powerful homotopy perturbation method (HPM). Validation with the MATLAB bvp4c numerical scheme is included for Nusselt number. Graphical plots are presented for velocity, temperature and Nusselt number for the influence of emerging parameters. Increment in thermal Grashof number and electric field parameter enhance velocity. Increasing Brinkman number and magnetic interaction number boost temperatures and a weak elevation is also observed in temperatures with increment in third-grade non-Newtonian parameter and Forchheimer number. Nusselt number is also elevated with thermal Grashof number, Forchheimer number, third-grade fluid parameter, Darcy parameter, Brinkman number and magnetic number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Senapati, J.R., Dash, S.K., Roy, S.: Numerical investigation of natural convection heat transfer over annular finned horizontal cylinder. Int. J. Heat Mass Transf. 96, 330–345 (2016)

    Google Scholar 

  2. Milani Shirvan, K., Ellahi, R., Mamourian, M., Moghiman, M.: Effects of wavy surface characteristics on natural convection heat transfer in a cosine corrugated square cavity filled with nanofluid. Int. J. Heat Mass Transf. 107, 1110–1118 (2017)

    Google Scholar 

  3. Rahimi, A., Saee, A.D., Kasaeipoor, A., Malekshah, E.H.: A comprehensive review on natural convection flow and heat transfer: The most practical geometries for engineering applications. Int. J. Numer. Methods Heat Fluid Flow 29, 834–877 (2019)

    Google Scholar 

  4. Haghighi, S.S., Goshayeshi, H.R., Safaei, M.R.: Natural convection heat transfer enhancement in new designs of plate-fin based heat sinks. Int. J. Heat Mass Transf. 125, 640–647 (2018)

    Google Scholar 

  5. Mohebbi, R., Izadi, M., Sajjadi, H., Delouei, A.A., Sheremet, M.A.: Examining of nanofluid natural convection heat transfer in a Γ-shaped enclosure including a rectangular hot obstacle using the lattice Boltzmann method. Phys. A 526, 120831 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Roy, K., Giri, A., Das, B.: A computational study on natural convection heat transfer from an inclined plate finned channel. Appl. Therm. Eng. 159, 113941 (2019)

    Google Scholar 

  7. Bhowmick, D., Randive, P.R., Pati, S., Agrawal, H., Kumar, A., Kumar, P.: Natural convection heat transfer and entropy generation from a heated cylinder of different geometry in an enclosure with non-uniform temperature distribution on the walls. J. Therm. Anal. Calorim. 141, 839–857 (2020)

    Google Scholar 

  8. Ding, Y., Zhang, W., Deng, B., Gu, Y., Liao, Q., Long, Z., Zhu, X.: Experimental and numerical investigation on natural convection heat transfer characteristics of vertical 3-D externally finned tubes. Energy (Oxf.). 239, 122050 (2022)

    Google Scholar 

  9. Laser, D.J., Santiago, J.G.: A review of micropumps. J. Micromech. Microeng. 14, R35–R64 (2004)

    Google Scholar 

  10. Aluru, N., Beskok, A., Karniadakis, G., George, K.: Microflows and Nanoflows: Fundamentals and Simulation. Springer, New York, NY (2005)

    MATH  Google Scholar 

  11. Yi, M., Qian, S., Bau, H.H.: A magnetohydrodynamic chaotic stirrer. J. Fluid Mech. 468, 153–177 (2002)

    MathSciNet  MATH  Google Scholar 

  12. Goodarzi, M., Tlili, I., Tian, Z., Safaei, M.R.: Efficiency assessment of using graphene nanoplatelets-silver/water nanofluids in microchannel heat sinks with different cross-sections for electronics cooling. Int. J. Numer. Methods Heat Fluid Flow 30, 347–372 (2019)

    Google Scholar 

  13. Pamme, N.: Magnetism and microfluidics. Lab Chip. 6, 24–38 (2006)

    Google Scholar 

  14. Nguyen, N.-T.: Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale. Microfluid. Nanofluidics. 12, 1–16 (2012)

    Google Scholar 

  15. Nourdanesh, N., Hossainpour, S., Adamiak, K.: Numerical simulation and optimization of natural convection heat transfer enhancement in solar collectors using electrohydrodynamic conduction pump. Appl. Therm. Eng. 180, 115825 (2020)

    Google Scholar 

  16. Umavathi, J.C., Bég, O.A.: Double-diffusive convection in a dissipative electrically conducting nanofluid under orthogonal electric and magnetic fields: a numerical study. Nanosci. Technol. Int. J. 12, 59–90 (2021)

    Google Scholar 

  17. Balaji, R., Prakash, J., Tripathi, D., Bég, O.A.: Computation of magnetohydrodynamic electro-osmotic modulated rotating squeezing flow with zeta potential effects. Colloids Surf. A Physicochem. Eng. Asp. 640, 128430 (2022)

    Google Scholar 

  18. Umavathi, J.C., Patil, S.L., Mahanthesh, B., Bég, O.A.: Unsteady squeezing flow of a magnetized nano-lubricant between parallel disks with Robin boundary conditions. Proc. Inst. Mech. Eng. N J. Nanomater. Nanoeng. Nanosyst. 235, 67–81 (2021)

    Google Scholar 

  19. Bég, O.A., Bég, T.A., Munjam, S.R., Jangili, S.: Homotopy and adomian semi-numerical solutions for oscillatory flow of partially ionized dielectric hydrogen gas in a rotating MHD energy generator duct. Int. J. Hydrogen Energy 46, 17677–17696 (2021)

    Google Scholar 

  20. Tripathi, D., Jayavel, P., Osman, A.B., Srivastava, V.: EMHD Casson hybrid nanofluid flow over an exponentially accelerated rotating porous surface. J. Porous Media (2022). https://doi.org/10.1615/jpormedia.2022041050

    Article  Google Scholar 

  21. Bhatti, M.M., Zeeshan, A., Ijaz, N., Anwar Bég, O., Kadir, A.: Mathematical modelling of nonlinear thermal radiation effects on EMHD peristaltic pumping of viscoelastic dusty fluid through a porous medium duct. Eng. Sci. Technol. Int. J. 20, 1129–1139 (2017)

    Google Scholar 

  22. Singh, H., Myong, R.S.: Critical review of fluid flow physics at micro- to nano-scale porous media applications in the energy sector. Adv. Mater. Sci. Eng. 2018, 1–31 (2018)

    Google Scholar 

  23. Konovalov, D.A., Ryazhskikh, V.I., Lazarenko, I.N., Kozhukhov, N.N.: Model of cooling of compact surfaces by microchannel recuperative heat exchangers with a matrix of filamentary silicon single crystals. J. Eng. Phys. Thermophys. 92, 355–364 (2019)

    Google Scholar 

  24. Lopes, A.O., Ruggiero, R.: Nonequilibrium in thermodynamic formalism: The second law, gases and information geometry. Qual. Theory Dyn. Syst. 21, 1–44 (2022)

    MathSciNet  MATH  Google Scholar 

  25. Bahmani, M.H., Sheikhzadeh, G., Zarringhalam, M., Akbari, O.A., Alrashed, A.A.A.A., Shabani, G.A.S., Goodarzi, M.: Investigation of turbulent heat transfer and nanofluid flow in a double pipe heat exchanger. Adv. Powder Technol. 29, 273–282 (2018)

    Google Scholar 

  26. Bear, J.: Dynamics of Fluids in Porous Media. Elsevier Science, London, England (1972)

    MATH  Google Scholar 

  27. Roy, A.K., Bég, O.A., Saha, A.K., Murthy, J.V.R.: Taylor dispersion in non-Darcy porous media with bulk chemical reaction: a model for drug transport in impeded blood vessels. J. Eng. Math. 127, 1–27 (2021)

    MathSciNet  MATH  Google Scholar 

  28. Bèg, Ò.À., Takhar, H.S., Soundalgekar, V.M.: Thermoconvective flow in a saturated, isotropic, homogeneous porous medium using Brinkman’s model: numerical study. Int. J. Numer. Methods Heat Fluid Flow 8, 559–589 (1998)

    MATH  Google Scholar 

  29. Aksoy, Y., Pakdemirli, M.: Approximate analytical solutions for flow of a third-grade fluid through a parallel-plate channel filled with a porous medium. Transp. Porous Media. 83, 375–395 (2010)

    MathSciNet  Google Scholar 

  30. Kairi, R.R., Murthy, P.V.S.N.: Effect of viscous dissipation on natural convection heat and mass transfer from vertical cone in a non-Newtonian fluid saturated non-Darcy porous medium. Appl. Math. Comput. 217, 8100–8114 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Zhao, J., Zheng, L., Zhang, X., Liu, F., Chen, X.: Unsteady natural convection heat transfer past a vertical flat plate embedded in a porous medium saturated with fractional Oldroyd-B fluid. J. Heat Transf. 139, 012501 (2017)

    Google Scholar 

  32. Ahmad, S., Farooq, M., Anjum, A., Javed, M., Malik, M.Y., Alshomrani, A.S.: Diffusive species in MHD squeezed fluid flow through non-Darcy porous medium with viscous dissipation and joule heating. J. Magn. 23, 323–332 (2018)

    Google Scholar 

  33. Dutta, S., Biswas, A.K., Pati, S.: Numerical analysis of natural convection heat transfer and entropy generation in a porous quadrantal cavity. Int. J. Numer. Methods Heat Fluid Flow 29, 4826–4849 (2019)

    Google Scholar 

  34. Ewis, K.M.: A New Approach in Differential transformation method with application on MHD flow in non-Darcy medium between porous parallel plates considering hall current. Adv. Water Resour. 143, 103677 (2020)

    Google Scholar 

  35. Gopal, D., Saleem, S., Jagadha, S., Ahmad, F., Othman Almatroud, A., Kishan, N.: Numerical analysis of higher order chemical reaction on electrically MHD nanofluid under influence of viscous dissipation. Alex. Eng. J. 60, 1861–1871 (2021)

    Google Scholar 

  36. Saha, L.K., Bala, S.K., Roy, N.C.: Natural convection flow in a fluid-saturated non-Darcy porous medium within a complex wavy wall reactor. J. Therm. Anal. Calorim. 146, 325–340 (2020)

    Google Scholar 

  37. Ashraf, M., Ilyas, A., Ullah, Z., Ali, A.: Combined effects of viscous dissipation and magnetohydrodynamic on periodic heat transfer along a cone embedded in porous Medium. Proc. Inst. Mech. Eng. Part E J Process Mech. Eng. (2022). https://doi.org/10.1177/09544089221089135

    Article  Google Scholar 

  38. Abbas, A., Shafqat, R., Jeelani, M.B., Alharthi, N.H.: Significance of chemical reaction and Lorentz force on third-grade fluid flow and heat transfer with Darcy-Forchheimer law over an inclined exponentially stretching sheet embedded in a porous medium. Symmetry (Basel). 14, 779 (2022)

    Google Scholar 

  39. Jang, J., Lee, S.S.: Theoretical and experimental study of MHD (magnetohydrodynamic) micropump. Sens. Actuators A Phys. 80, 84–89 (2000)

    Google Scholar 

  40. Hussein, A.K., Ghodbane, M., Said, Z., Ward, R.S.: The effect of the baffle length on the natural convection in an enclosure filled with different nanofluids. J. Therm. Anal. Calorim. 147, 791–813 (2022)

    Google Scholar 

  41. Al-Farhany, K., Al-dawody, M.F., Hamzah, D.A., Al-Kouz, W., Said, Z.: Numerical investigation of natural convection on Al2O3–water porous enclosure partially heated with two fins attached to its hot wall: under the MHD effects. Appl. Nanosci. (2021)

  42. Bhandari, D.S., Tripathi, D., Narla, V.K.: Magnetohydrodynamics-based pumping flow model with propagative rhythmic membrane contraction. Eur. Phys. J. Plus. 135, (2020)

  43. Ellahi, R., Afzal, S.: Effects of variable viscosity in a third grade fluid with porous medium: an analytic solution. Commun. Nonlinear Sci. Numer. Simul. 14, 2056–2072 (2009)

    MathSciNet  MATH  Google Scholar 

  44. Shenoy, A.V.: Non-Newtonian fluid heat transfer in porous media. In: Advances in Heat Transfer Vol. 24. pp. 101–190. Elsevier (1994).

  45. Akbar, N.S., Tripathi, D., Bég, O.A.: Modeling nanoparticle geometry effects on peristaltic pumping of medical magnetohydrodynamic nanofluids with heat transfer. J. Mech. Med. Biol. 16, 1650088 (2016)

    Google Scholar 

  46. Bhatti, M.M., Lu, D.Q.: Head-on collision between two hydroelastic solitary waves in Shallow Water. Qual. Theory Dyn. Syst. 17, 103–122 (2018)

    MathSciNet  MATH  Google Scholar 

  47. Ebaid, A.: Remarks on the homotopy perturbation method for the peristaltic flow of Jeffrey fluid with nano-particles in an asymmetric channel. Comput. Math. Appl. 68, 77–85 (2014)

    MATH  Google Scholar 

  48. Alizadeh-Pahlavan, A., Aliakbar, V., Vakili-Farahani, F., Sadeghy, K.: MHD flows of UCM fluids above porous stretching sheets using two-auxiliary-parameter homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 14, 473–488 (2009)

    Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Bhatti.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

None.

Informed consent

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatti, M.M., Bég, O.A., Ellahi, R. et al. Natural Convection Non-Newtonian EMHD Dissipative Flow Through a Microchannel Containing a Non-Darcy Porous Medium: Homotopy Perturbation Method Study. Qual. Theory Dyn. Syst. 21, 97 (2022). https://doi.org/10.1007/s12346-022-00625-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-022-00625-7

Keywords

Navigation