Skip to main content
Log in

An Explication of Finite-Time Stability for Fractional Delay Model with Neutral Impulsive Conditions

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

The article deals with the analysis of finite time stability (FTS) of multi state neutral fractional order systems with impulsive perturbations and state delays. FTS studies about the trajectories of a dynamical system which converge to equilibrium state in a short period of time. Gronwall’s inequality is used as a main tool to derive the FTS conditions. The obtained theoretical results are validated with appropriate numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abbas, S., Benchohra, M., Nieto, J.J.: Caputo-Fabrizio fractional differential equations with non instantaneous impulses. Rendiconti del Circolo Matematico di Palermo Series 2(71), 131–144 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arthi, G., Brindha, N.: On finite-time stability of nonlinear fractional-order systems with impulses and multi-state time delays. Results Control Optim. (2021). https://doi.org/10.1016/j.rico.2021.100010

    Article  MATH  Google Scholar 

  3. Beta, S.: On the constrained controllability of dynamical systems with multiple delays in the state. Int. J. Appl. Math. Comput. Sci. 13(4), 469–479 (2003)

    MathSciNet  Google Scholar 

  4. Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38, 751–766 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Debbouche, A., Nieto, J.J.: Relaxation in controlled systems described by fractional integro-differential equations with nonlocal control conditions. Electron. J. Differ. Equ. 2015(89), 1–18 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Debbouche, A., Nieto, J.J.: Sobolev type fractional abstract evolution equations with nonlocal conditions and optimal multi-controls. Appl. Math. Comput. 245, 74–85 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Farid, Y., Ruggiero, F.: Finite-time extended state observer and fractional-order sliding mode controller for impulsive hybrid port-Hamiltonian systems with input delay and actuators saturation: application to ball-juggler robots. Mech. Mach. Theory (2022). https://doi.org/10.1016/j.mechmachtheory.2021.104577

    Article  Google Scholar 

  8. Feckan, M., Zhou, Y., Wang, J.R.: On the concept and existence of solution for impulsive fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 17, 3050–3060 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. He, J., Kong, F., Nieto, J.J., Qui, H.: Globally exponential stability of piecewise pseudo almost periodic solutions for neutral differential equations with impulses and delays. Qual. Theory Dyn. Syst. (2022). https://doi.org/10.1007/s12346-022-00578-x

    Article  MathSciNet  MATH  Google Scholar 

  10. Hei, X.D., Wu, R.C.: Finite-time stability of impulsive fractional-order systems with time-delay. Appl. Math. Model. 40, 4285–4290 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hilal, K., Allauoi, Y.: Existence of solution of neutral fractional impulsive differential equations with infinite delay. General Lett. Math. 2(2), 73–83 (2017)

    Article  Google Scholar 

  12. Klamka, J., Babiarz, A., Czornik, A., Niezabitowski, M.: Controllability and stability of semilinear fractional order systems. Stud. Syst. Decis. Control 296, 267–290 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kavitha, K., Vijayakumar, V., Udhayakumar, R., Ravichandran, C.: Results on controllability of Hilfer fractional differential equations with infinite delay via measures of noncompactness. Asian J. Control 24, 1406–1415 (2021)

    Article  MathSciNet  Google Scholar 

  14. Kumar, V., Malik, M., Debbouche, A.: Total controllability of neutral fractional differential equation with non-instantaneous impulsive effects. J. Comput. Appl. Math. 383, 113–158 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kumar, V., Malik, M., Debbouche, A.: Stability and controllability analysis of fractional damped differential system with non-instantaneous impulses. Appl. Math. Comput. (2021). https://doi.org/10.1016/j.amc.2020.125633

    Article  MathSciNet  MATH  Google Scholar 

  16. Lazarevic, M.P., Spasic, A.M.: Finite-time stability analysis of fractional-order time-delay systems: Gronwall’s approach. Math. Comput. Model. 49, 475–481 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lee, L., Liu, Y., Liang, J., Cai, X.: Finite time stability of nonlinear impulsive systems and its applications in sampled-data systems. ISA Trans. 57, 172–178 (2015)

    Article  Google Scholar 

  18. Li, M., Wang, J.R.: Finite-time stability and relative controllability of Riemann–Liouville fractional delay differential equations. Math. Methods Appl. Sci. 42, 6607–6623 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, M., Wang, J.R.: Finite-time stability of fractional delay differential equations. Appl. Math. Lett. 64, 170–176 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, Y., Huang, H.Z.: Reliability assessment for fuzzy multi-state systems. Int. J. Syst. Sci. 41, 365–379 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Luo, D., Luo, Z.: Existence of solutions for fractional differential inclusions with initial value condition and non-instantaneous impulses. Filomat 33, 5499–5510 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Magin, R.: Fractional calculus in bioengineering. Crit. Rev. Biomed. Eng. 32(1), 1–104 (2004). https://doi.org/10.1615/CritRevBiomedEng.v32.i1.10

    Article  Google Scholar 

  23. Malik, M., Kumar, A., Feckan, M.: Existence, uniqueness and stability of solutions to second order nonlinear differential equations with non-instantaneous impulses. J. King Saud Univ. Sci. 30, 204–213 (2018)

    Article  Google Scholar 

  24. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  25. Nisar, K.S., Jothimani, K., Kaliraj, K., Ravichandran, C.: An analysis of controllability results for nonlinear Hilfer neutral fractional derivatives with non-dense domain. Chaos Solitons Fractals (2021). https://doi.org/10.1016/j.chaos.2021.110915

    Article  MathSciNet  MATH  Google Scholar 

  26. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of Their Applications. Academic Press (1999)

    MATH  Google Scholar 

  27. Ravichandran, C., Valliammal, N., Nieto, J.J.: New results on exact controllability of a class of fractional neutral integro-differential systems with state-dependent delay in Banach spaces. J. Frankl. Inst. 356, 1535–1565 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tarasov, V.E.: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer (2011)

    Google Scholar 

  29. Tian, Y., Wang, J.R., Zhou, Y.: Almost periodic solutions for a class of non-instantaneous impulsive differential equations. Quaest. Math. 42, 885–905 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tuan, H.T., Czornik, A., Nieto, J.J., Niezabitowski, M.L.: Global attractivity for some classes of Riemann–Liouville fractional differential systems. J. Integral Equ. Appl. 31, 265–282 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, J.R., Feckan, M.: A general class of impulsive evolution equations. Topol. Methods Nonlinear Anal. 46, 915–933 (2015)

    MathSciNet  MATH  Google Scholar 

  32. Wang, J.R., Feckan, M.: Non-instantaneous Impulsive Differential Equations: Basic Theory and Computation. Institute of Physics Publishing (2018)

    Google Scholar 

  33. Wang, J.R., Ibrahim, A.G., Feckan, M., Zhou, Y.: Controllability of fractional non-instantaneous impulsive differential inclusions without compactness. IMA J. Math. Control Inf. 36, 443–460 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, G., Ahmad, B., Zhang, L., Nieto, J.J.: Comments on the concept of existence of solution for impulsive fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 19, 401–403 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wu, K.N., Na, M.Y., Wang, L., Ding, X., Wu, B.: Finite-time stability of impulsive reaction-diffusion systems with and without time delay. Appl. Math. Comput. (2019). https://doi.org/10.1016/j.amc.2019.124591

    Article  MathSciNet  MATH  Google Scholar 

  36. Wu, S.: Joint importance of multistate systems. Comput. Ind. Eng. 49, 63–75 (2005)

    Article  Google Scholar 

  37. Ye, H., Gao, J., Ding, Y.: A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328, 1075–1081 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, X., Li, C., Huang, T.: Impacts of state-dependent impulses on the stability of switching Cohen–Grossberg neural networks. Adv. Differ. Equ. 2017, 316 (2017). https://doi.org/10.1186/s13662-017-1375-z

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhou, Y., Jiao, F.: Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 59, 1063–1077 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zong-Yao, S., Yu, S., Chih-Chiang, C.: Fast finite-time stability and its application in adaptive control of high-order nonlinear system. Automatica 106, 339–348 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kaliraj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaliraj, K., Priya, P.K.L. & Ravichandran, C. An Explication of Finite-Time Stability for Fractional Delay Model with Neutral Impulsive Conditions. Qual. Theory Dyn. Syst. 21, 161 (2022). https://doi.org/10.1007/s12346-022-00694-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-022-00694-8

Keywords

Mathematics Subject Classification

Navigation