Skip to main content
Log in

Cosine based latent factor model for ranking the recommendation

  • Original Paper
  • Published:
Operational Research Aims and scope Submit manuscript

Abstract

The purpose of this paper is to propose a novel latent factor model that generates a ranked list of items in the recommendation list based on prior interaction with system on e-commerce platforms. The ranking of items in recommendation list is exhibited as an optimization model that optimizes the ranking metrics. The latent features of user and items are learnt using cosine based latent factor model which in turn are used to learn the ranking metric. This paper proposes cosine based latent factor model to learn the implicit features, and corresponding surrogate ranking loss function is optimized. Comprehensive evaluation on three benchmark datasets shows the considerable improvement of the proposed model on ranking metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. http://grouplens.org/datasets/movielens/.

References

  • Adolphs C, Winkelmann A (2010) Personalization research in e-commerce–a state of the art review (2000–2008). J Electron Commer Res 11(4):326–341

    Google Scholar 

  • Agarwal D, Chen B-C (2009) Regression-based latent factor models. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining, ACM, pp 19–28

  • Ahmed A, Kanagal B, Pandey S, Josifovski V, Pueyo LG, Yuan J (2013) Latent factor models with additive and hierarchically-smoothed user preferences. In: Proceedings of the sixth ACM international conference on web search and data mining—WSDM’13. https://doi.org/10.1145/2433396.2433445

  • Anand D, Bharadwaj KK (2011) Utilizing various sparsity measures for enhancing accuracy of collaborative recommender systems based on local and global similarities. Expert Syst Appl 38(5):5101–5109

    Article  Google Scholar 

  • Balakrishnan S, Chopra S, Ave P, Park F, Ave P, Park F (2012) Collaborative ranking. In: Proceedings of the fifth ACM international conference on web search and data mining—WSDM’12, p 143. https://doi.org/10.1145/2124295.2124314

  • Bauer J, Nanopoulos A (2014) Recommender systems based on quantitative implicit customer feedback. Decis Support Syst 68:77–88

    Article  Google Scholar 

  • Bell RM, Koren Y, Ave P, Park F (2007) Scalable collaborative filtering with jointly derived neighborhood interpolation weights. https://doi.org/10.1109/ICDM.2007.90

  • Bellogin A, Castells P, Cantador I (2011) Precision-oriented evaluation of recommender systems: an algorithmic comparison. In: Proceedings of the fifth ACM conference on recommender systems, ACM, New York, pp 333–336. https://doi.org/10.1145/2043932.2043996

  • Burges C, Burges C, Renshaw E, Renshaw E, Deeds M, Deeds M, Hullender G (1998) Learning to rank using gradient descent. World. doi:10.1145/1102351.1102363

    Article  Google Scholar 

  • Cao Z, Qin T, Liu T-Y, Tsai M-F, Li H (2007) Learning to rank: from pairwise approach to listwise approach. In: Proceedings of the 24th international conference on machine learning, pp 129–136. https://doi.org/10.1145/1273496.1273513

  • Chen W, Liu T, Lan Y, Ma Z, Li H (2009) Ranking measures and loss functions in learning to rank. In: Nips (pp. 1–9). Retrieved from https://papers.nips.cc/paper/3708-ranking-measures-and-loss-functions-in-learning-to-rank.pdf

  • Cheung KW, Kwok JT, Law MH, Tsui KC (2003) Mining customer product ratings for personalized marketing. Decis Support Syst 35(2):231–243. doi:10.1016/S0167-9236(02)00108-2

    Article  Google Scholar 

  • Chung CY, Hsu PY, Huang SH (2013) Bp: a novel approach to filter out malicious rating profiles from recommender systems. Decis Support Syst 55(1):314–325. doi:10.1016/j.dss.2013.01.020

    Article  Google Scholar 

  • Crammer K, Singer Y (2002) Pranking with ranking. In: Advances in neural information processing systems 14, Vol. 14, pp. 641–647. https://doi.org/10.1.1.20.378

  • Deng X, Wang X (2009) Mining rank-correlated associations for recommendation systems. In: International Conference on web information systems and mining, 2009, WISM 2009, IEEE, pp 625–629

  • du Boucher-Ryan P, Bridge D (2006) Collaborative recommending using formal concept analysis. Knowl Based Syst 19(5):309–315. doi:10.1016/j.knosys.2005.11.017

    Article  Google Scholar 

  • Ekstrand MD (2010) Collaborative filtering recommender systems. Found Trends® Hum Comput Interact 4(2):81–173. doi:10.1561/1100000009

    Article  Google Scholar 

  • Freund Y, Iyer R, Schapire RE, Singer Y (2003) An Efficient boosting algorithm for combining preferences. J Mach Learn Res 4:933–969. doi:10.1162/jmlr.2003.4.6.933

    Article  Google Scholar 

  • Gan M, Jiang R (2013) Improving accuracy and diversity of personalized recommendation through power law adjustments of user similarities. Decis Support Syst 55(3):811–821. doi:10.1016/j.dss.2013.03.006

    Article  Google Scholar 

  • Gao M, Liu K, Wu Z (2010) Personalisation in web computing and informatics: theories, techniques, applications, and future research. Inf Syst Front 12(5):607–629

    Article  Google Scholar 

  • Gentile C, Li S, Giovanni Z (2014) Online Clustering of Bandits. Icml 32:757–765

    Google Scholar 

  • Goldberg K, Roeder T, Gupta D, Perkins C (2001) A constant time collaborative filtering algorithm. Inf Retrieval 4(2):133–151

    Article  Google Scholar 

  • Hao F, Li S, Min G, Kim HC, Yau SS, Yang LT (2015) An Efficient approach to generating location-sensitive recommendations in ad-hoc social network environments. IEEE Trans Serv Comput. doi:10.1109/TSC.2015.2401833

    Article  Google Scholar 

  • Harrington EF (2003) Online Ranking/Collaborative Filtering Using the Perceptron Algorithm. In: Proceedings of the 20th international conference on machine learning, pp 250–257

  • Hernández del Olmo F, Gaudioso E (2008) Evaluation of recommender systems: a new approach. Expert Syst Appl 35(3):790–804. doi:10.1016/j.eswa.2007.07.047

    Article  Google Scholar 

  • Ho Y, Kyeong J, Hie S (2002) A personalized recommender system based on web usage mining and decision tree induction. Expert Syst Appl 23:329–342

    Article  Google Scholar 

  • Huang J, Zhong N, Yao Y (2014) A unified framework of targeted marketing using customer preferences. Comput Intell 30(3):451–472. doi:10.1111/coin.12003

    Article  Google Scholar 

  • Improvement of Collaborative Filtering with the Simple Bayesian Classifier. (n.d.), pp 1–28

  • Järvelin K, Kekäläinen J (2002) Cumulated gain-based evaluation of IR techniques. ACM Trans Inf Syst 20(4):422–446. doi:10.1145/582415.582418

    Article  Google Scholar 

  • Jawaheer G, Weller P, Kostkova P (2014) Modeling user preferences in recommender systems: a classification framework for explicit and implicit user feedback. ACM Trans Interact Intell Syst 4(2):8:1–8:26. doi:10.1145/2512208

    Article  Google Scholar 

  • Joachims T (2002) Optimizing search engines using clickthrough data. In: Proceedings of the eighth acm sigkdd international conference on knowledge discovery and data mining, ACM, New York, pp 133–142. https://doi.org/10.1145/775047.775067

  • Kagie M, Van Der Loos M, Van Wezel M (2009) Including item characteristics in the probabilistic latent semantic analysis model for collaborative filtering. Ai Commun 22(4):249–265

    Article  Google Scholar 

  • Kannan R, Ishteva M, Park H (2012) Bounded matrix low rank approximation. In: Proceedings—IEEE international conference on data mining, ICDM, pp 319–328. https://doi.org/10.1109/ICDM.2012.131

  • Kar P, Li S, Narasimhan H, Chawla S, Sebastiani F. (2016) Online optimization methods for the quantification problem. https://doi.org/10.1145/2939672.2939832

  • Karatzoglou A, Larson M, Oliver N, Hanjalic A (2012) CLiMF: learning to maximize reciprocal rank with collaborative less-is-more filtering. In: Proceedings of the 6th ACM conference on recommender systems—RecSys’12, pp 139–146. https://doi.org/10.1145/2365952.2365981

  • Karatzoglou A, Baltrunas L, Shi Y (2013) Learning to rank for recommender systems. In Proceedings of the 7th ACM conference on Recommender systems, ACM, pp. 493–494

  • Karypis G (2001) Evaluation of item-based top-n recommendation algorithms. In: Proceedings of the tenth international conference on Information and knowledge management, ACM, pp 247–254

  • Kelleher J, Bridge D (2004) An accurate and scalable collaborative recommender. Artif Intell Rev 21(3–4):193–213

    Article  Google Scholar 

  • Kim YS, Yum B-J, Song J, Kim SM (2005) Development of a recommender system based on navigational and behavioral patterns of customers in e-commerce sites. Expert Syst Appl 28(2):381–393

    Article  Google Scholar 

  • Korda N, Szörényi B, Shuai L (2016) Distributed clustering of linear bandits in peer to peer networks. J Mach Learn Res Workshop Conf Proc 48:1301–1309

    Google Scholar 

  • Koren Y, Bell R (2011) Advances in collaborative filtering. In: Recommender systems handbook, pp 145–186. https://doi.org/10.1007/978-0-387-85820-3

    Google Scholar 

  • Koren Y, Sill J (2011) OrdRec: an ordinal model for predicting personalized item rating distributions. In: Proceedings of the fifth ACM conference on Recommender systems, ACM, pp 117–124

  • Lee J, Bengio S, Kim S (2014) Local collaborative ranking. In: Proceedings of the 23rd international conference on World wide web, pp. 85–95. https://doi.org/10.1145/2566486.2567970

  • Li S, Hao F, Li M, Kim H-C (2013) Medicine rating prediction and recommendation in mobile social networks. In: Park JJJH, Arabnia HR, Kim C, Shi W, Gil J-M (eds) Grid and pervasive computing: 8th international conference, GPC 2013 and colocated workshops, Seoul, Korea, May 9–11, 2013. Proceedings, Springer, Berlin, Heidelberg, pp 216–223. https://doi.org/10.1007/978-3-642-38027-3_23

    Chapter  Google Scholar 

  • Li S, Karatzoglou A, Gentile C (2016) Collaborative filtering bandits. Sigir. doi:10.1145/2911451.2911548

    Article  Google Scholar 

  • Liu D, Liou C (2011) Mobile commerce product recommendations based on hybrid multiple channels. Electron Commer Res Appl 10(1):94–104. doi:10.1016/j.elerap.2010.08.004

    Article  Google Scholar 

  • Liu NN, Yang Q (2008) Eigen rank. In: Proceedings of the 31st annual international ACM SIGIR conference on research and development in information retrieval—SIGIR’08, p 83. https://doi.org/10.1145/1390334.1390351

  • Liu Q, Chen E, Xiong H, Ding CHQ, Chen J (2012) Enhancing collaborative filtering by user interest expansion via personalized ranking. IEEE Trans Syst Man Cybern Part B (Cybern) 42(1):218–233

    Article  Google Scholar 

  • Liu J, Wu C, Xiong Y, Liu W (2014) List-wise probabilistic matrix factorization for recommendation. Inf Sci 278:434–447. doi:10.1016/j.ins.2014.03.063

    Article  Google Scholar 

  • McAuley J, Leskovec J (2013) Hidden factors and hidden topics: understanding rating dimensions with review text. In: Proceedings of the 7th ACM conference on recommender systems—RecSys’13, pp 165–172. https://doi.org/10.1145/2507157.2507163

  • Niemann K, Wolpers M (2013) A new collaborative filtering approach for increasing the aggregate diversity of recommender systems. In: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’13, pp 955–963. doi:10.1145/2487575.2487656

  • Ning X, Karypis G (2011) Slim: sparse linear methods for top-n recommender systems. In: 2011 IEEE 11th international conference on data mining, IEEE, pp 497–506

  • Paterek A (2007) Improving regularized singular value decomposition for collaborative filtering. In: Proceedings of the KDD cup workshop at SIGKDD’07, 13th ACM International Conference on knowledge discovery and data mining, pp 39–42. Retrieved from http://serv1.ist.psu.edu:8080/viewdoc/summary;jsessionid=CBC0A80E61E800DE518520F9469B2FD1?doi=10.1.1.96.7652

  • Pennock DM, Horvitz E, Lawrence S, Giles CL (2000) Collaborative filtering by personality diagnosis: A hybrid memory-and model-based approach. In: Proceedings of the 16th conference on uncertainty in artificial intelligence 64(10):473–480

  • Polytechnique É, De Lausanne F, Aberer, K. (2014). Towards a dynamic top-N recommendation framework. In: Proceedings of the 8th ACM conference on recommender systems—RecSys’14, pp 217–224. https://doi.org/10.1145/2645710.2645720

  • Qin T, Zhang XD, Tsai MF, Wang DS, Liu TY, Li H (2008) Query-level loss functions for information retrieval. Inf Process Managt 44(2):838–855. doi:10.1016/j.ipm.2007.07.016

    Article  Google Scholar 

  • Rendle S, Freudenthaler C, Gantner Z, Schmidt-Thieme L (2009) BPR: bayesian personalized ranking from implicit feedback. In: Proceedings of the twenty-fifth conference on uncertainty in artificial intelligence, AUAI Press, pp. 452–461

  • Resnick P, Iacovou N, Suchak M, Bergstrom P, Riedl J (1994) GroupLens: an open architecture for collaborative filtering of netnews. In: Proceedings of the 1994 ACM conference on computer supported cooperative work, ACM, pp 175–186

  • Rupnik J (2010) Learning to rank for personalized news article retrieval. J Mach Learn Res Proc Track 11:152–159

    Google Scholar 

  • Salakhutdinov R, Mnih A (2007) Probabilistic Matrix Factorization. In: Proceedings of the 20th international conference on neural information processing systems, pp 1257–1264

  • Sarwar BM, Karypis G, Konstan JA, Riedl JT (2000) Application of dimensionality reduction in recommender systems: a case study. In: ACM WebKDD workshop, 67, 12. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.744

  • Shi Y, Larson M, Hanjalic A (2010) List-wise learning to rank with matrix factorization for collaborative filtering. In: Proceedings of the fourth ACM conference on recommender systems, ACM, pp 269–272

  • Steck H, Labs B, Ave M, Hill M (2010) Training and testing of recommender systems on data missing not at random. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining, pp 713–722. https://doi.org/10.1145/1835804.1835895

  • Takács G, Pilászy I, Németh B, Tikk D (2009) Scalable collaborative filtering approaches for large recommender systems. J Mach Learn Res 10: pp 623–656. Retrieved from http://portal.acm.org/citation.cfm?id=1577069.1577091

  • Taylor M, Guiver J, Robertson S, Minka T (2008) Softrank: optimizing non-smooth rank metrics. In: Proceedings of the 2008 international conference on web search and data mining, ACM, pp 77–86

  • Vahidov R, Ji F (2005) A diversity-based method for infrequent purchase decision support in e-commerce. 4:143–158. https://doi.org/10.1016/j.elerap.2004.09.001

    Article  Google Scholar 

  • Valizadegan H, Jin R (2009) Learning to rank by optimizing ndcg measure. Adv Neural. doi:10.1561/1500000016

    Article  Google Scholar 

  • Weimer M, Karatzoglou A (2007) Cofirank-maximum margin matrix factorization for collaborative ranking. Adv Neural pp 1–30. Retrieved from http://hal.archives-ouvertes.fr/docs/00/48/27/40/PDF/NIPS2007_0612.pdf

  • Weimer M, Karatzoglou A, Bruch M (2009) Maximum margin matrix factorization for collaborative Ranking. In: Proceedings of the RecSys, pp 309–312. https://doi.org/10.1145/1639714.1639775

  • Xia F, Liu T-Y, Wang J, Zhang W, Li H (2008) Listwise approach to learning to rank. In: Proceedings of the 25th international conference on machine learning—ICML’08, pp 1192–1199. https://doi.org/10.1145/1390156.1390306

  • Yang X, Guo Y, Liu Y, Steck H (2014) A survey of collaborative filtering based social recommender systems. Comput Commun 41:1–10. doi:10.1016/j.comcom.2013.06.009

    Article  Google Scholar 

  • Yu S, Yu K, Tresp V, Kriegel H-P (2006) Collaborative ordinal regression. In: Proceedings of the 23rd international conference on machine learning—ICML’06, pp 1089–1096. https://doi.org/10.1145/1143844.1143981

  • Yu K, Zhu S, Lafferty J, Gong Y (2009) Fast nonparametric matrix factorization for large-scale collaborative filtering. In: Proceedings of the 32Nd international ACM SIGIR conference on research and development in information retrieval, ACM, New York, pp 211–218. https://doi.org/10.1145/1571941.1571979

  • Zhang M (2009) Enhancing diversity in top-N recommendation. In: Proceedings of the third ACM conference on recommender systems—RecSys’09, p 397. https://doi.org/10.1145/1639714.1639798

  • Ziegler C-N, McNee SM, Konstan JA, Lausen G (2005) Improving recommendation lists through topic diversification. In: Proceedings of the 14th international conference on World Wide Web, ACM, pp. 22–32. https://doi.org/10.1109/ICICISYS.2009.5358201

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bipul Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, B., Bala, P.K. Cosine based latent factor model for ranking the recommendation. Oper Res Int J 20, 297–317 (2020). https://doi.org/10.1007/s12351-017-0325-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12351-017-0325-6

Keywords

Navigation