Skip to main content
Log in

Effect of Treatment with Gibberellin, Gibberellin Biosynthesis Inhibitor, and Auxin on Steviol Glycoside Content in Stevia rebaudiana Bertoni

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

Steviol glycosides (SGs) are natural compounds present in Stevia rebaudiana (Bertoni) Bertoni, which are approximately 200–400 times sweeter than sucrose. A biosynthetic pathway of SGs shares a biosynthetic pathway of gibberellin (GA) through a formation of ent-kaurenoic acid. Previous studies have demonstrated that SG-related genes are upregulated by exogenous GA treatment. However, the transcription level of UGT85C2, which is involved in a glycosylation step to steviol from steviolmonoside and suggests a rate-limiting step in the SGs biosynthesis, remains controversial in GA treatments. To have a detailed understanding of the relationship between SGs and GAs, a concentration gradient of exogenous GA3, GA inhibitor daminozide (DAM), and naphthaleneacetic acid (NAA) was used for treatment by the leaf infiltration method. Results showed that transcription level of UGT85C2 and the total number of stevioside and rebaudioside-A induced by GA3, DAM, or NAA treatment were significantly upregulated compared to an untreated group. These results suggest that the GA biosynthetic pathway affects the number of SGs and that hormonal crosstalk occurs between GA and auxin, which changes the number of SGs in S. rebaudiana. Controlling the GA biosynthesis could be considered to modulate the yield of SGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alves, Leo M., and M. Ruddat. 1979. The presence of gibberellin A20 in Stevia rebaudiana and its significance for the biological activity of steviol. Plant Cell Physiology 20(1): 123–130.

    CAS  Google Scholar 

  • Ceunen, Stijn, and Jan M.C. Geuns. 2013. Steviol glycosides: chemical diversity, metabolism, and function. Journal of Natural Products 76(6): 1201–1228.

    Article  CAS  PubMed  Google Scholar 

  • Chatsudthipong, Varanuj, and Chatchai Muanprasat. 2009. Stevioside and related compounds: therapeutic benefits beyond sweetness. Pharmacology & Therapeutics 121(1): 41–54.

    Article  CAS  Google Scholar 

  • Cleland, R.E. 1995. Auxin and cell elongation. In: Davies, P.J. (eds) Plant hormones, 214–227. Dordrecht: Springer.

  • Crammer, B., and R. Ikan. 1986. Sweet glycosides from the stevia plant. Chemistry in Britain 22(10): 915–917.

    CAS  Google Scholar 

  • Fleet, Christine M., and Tai-ping Sun. 2005. A DELLAcate balance: the role of gibberellin in plant morphogenesis. Current Opinion in Plant Biology 8: 77–85.

    Article  CAS  PubMed  Google Scholar 

  • Gubler, Frank, Roger Kalla, James K. Roberts, and John V. Jacobsen. 1995. Gibberellin-regulated expression of a myb gene in barley aleurone cells: evidence for Myb transactivation of a high-pI α-amylase gene promoter. The Plant Cell 7(11): 1879–1891.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guleria, Praveen, Vineet Kumar, and Sudesh Kumar Yadav. 2011. Effect of sucrose on steviol glycoside biosynthesis pathway in Stevia rebaudiana. Asian Journal of Plant Sciences 10: 401–407.

    Article  CAS  Google Scholar 

  • Hajihashemi, Shokoofeh, Jan M.C. Geuns, and Ali Akbar Ehsanpour. 2012. Physiological analysis of Stevia rebaudiana after treatment with polyethylene glycol, paclobutrazol and gibberelic acid. In Proceedings of the 6th Eustas Stevia symposium. Stevia: Six months beyond authorization, ed. J. Ms Geuns, 157–180.

  • Hajihashemi, Shokoofeh, Jan M.C. Geuns, and Ali Akbar Ehsanpour. 2013. Gene transcription of steviol glycoside biosynthesis in Stevia rebaudiana Bertoni under polyethylene glycol, paclobutrazol and gibberellic acid treatments in vitro. Acta Physiologiae Plantarum 35: 2009–2014.

    Article  CAS  Google Scholar 

  • Hedden, Peter, and Andrew L. Phillips. 2000. Gibberellin metabolism: new insights revealed by the genes. Trends in Plant Science 5: 523–530.

    Article  CAS  PubMed  Google Scholar 

  • Helliwell, C.A., C.C. Sheldon, M.R. Olive, A.R. Walker, J.A. Zeevaart, W.J. Peacock, and E.S. Dennis. 1998. Cloning of the Arabidopsis ent-kaurene oxidase gene GA3. Proceedings of the National Academy of Sciences of the United States of America 95(15): 9019–9024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helliwell, C.A., A. Poole, W.J. Peacock, and E.S. Dennis. 1999. Arabidopsis ent-kaurene oxidase catalyzes three steps of gibberellin biosynthesis. Plant Physiology 119(2): 507–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helliwell, C.A., P.M. Chandler, A. Poole, E.S. Dennis, and W.J. Peacock. 2001. The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway. Proceedings of the National Academy of Sciences of the United States of America 98(4): 2065–2070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humphrey, Tania V., Alex S. Richman, Rima Menassa, and Jim E. Brandle. 2006. Spatial organization of four enzymes from Stevia rebaudiana that are involved in steviol glycoside synthesis. Plant Molecular Biology 61: 47–62.

    Article  CAS  PubMed  Google Scholar 

  • Jaitak, Vikas, A.P. Gupta, V.K. Kaul, and P.S. Ahuja. 2008. Validated high-performance thin-layer chromatography method for steviol glycosides in Stevia rebaudiana. Journal of Pharmaceutical and Biomedical Analysis 47: 790–794.

    Article  CAS  PubMed  Google Scholar 

  • Karimi, Mojtaba, Javad Hashemi, Ali Ahmadi, Alireza Abbasi, Antonio Pompeiano, Silvia Tavarini, Lorenzo Guglielminetti, and Luciana G. Angelini. 2014. Opposing effects of external gibberellin and daminozide on Stevia growth and metabolites. Applied Biochemistry and Biotechnology 175: 780–791. doi:10.1007/s12010-014-1310-7.

    Article  PubMed  Google Scholar 

  • Kumar, Hitesh, Kiran Kaul, Suphla Bajpai-Gupta, Vijay Kumar Kaul, and Sanjay Kumar. 2012. A comprehensive analysis of fifteen genes of steviol glycosides biosynthesis pathway in Stevia rebaudiana (Bertoni). Gene 492: 276–284.

    Article  CAS  PubMed  Google Scholar 

  • Mohamed, Amal A.A., Stijn Ceunen, Jan M.C. Geuns, Wim Van den Ende, and Marc De Ley. 2011. UDP-dependent glycosyltransferases involved in the biosynthesis of steviol glycosides. Journal of Plant Physiology 168: 1136–1141.

    Article  CAS  PubMed  Google Scholar 

  • Pan, Ruichi, and Zhijia Zhao. 1994. Synergistic effects of plant growth retardants and IBA on the formation of adventitious roots in hypocotyl cuttings of mung bean. Plant Growth Regulation 14(1): 15–19.

    Article  CAS  Google Scholar 

  • Rademacher, W. 2000. Growth retardants: effects on gibberellin biosynthesis and other metabolic pathways. Annual Review of Plant Physiology and Plant Molecular Biology 51(1): 501–531.

    Article  CAS  PubMed  Google Scholar 

  • Richman, Alex S., Mark Gijzen, Al N. Starratt, Zhiyi Yang, and Jim E. Brandle. 1999. Diterpene synthesis in Stevia rebaudiana: recruitment and up-regulation of key enzymes from the gibberellin biosynthetic pathway. Plant Journal 19(4): 411–421.

    Article  CAS  PubMed  Google Scholar 

  • Ross, John J., Damian P. O’Neill, Jennifer J. Smith, L. Huub, J. Kerckhoffs, and Robert C. Elliott. 2000. Evidence that auxin promotes gibberellin A1 biosynthesis in pea. Plant Journal 21(6): 547–552.

    Article  CAS  PubMed  Google Scholar 

  • Ross, John, and Damian O’Neill. 2001. New interactions between classical plant hormones. Trends in Plant Science 6(1): 2–4.

    Article  CAS  PubMed  Google Scholar 

  • Schiffman, Susan S., Barbara J. Booth, Michael L. Losee, Suzanne D. Pecore, and Zoe S. Warwick. 1995. Bitterness of sweeteners as a function of concentration. Brain Research Bulletin 36(5): 505–513.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, G., E. Jensen, C.R. Spray, and B.O. Phinney. 1992. Hydrolysis and reconjugation of gibberellin A20 glucosyl ester by seedlings of Zea mays L. Proceedings of the National Academy of Sciences 89(17): 8045–8048.

    Article  CAS  Google Scholar 

  • Schneider, G., and W. Schliemann. 1994. Gibberellin conjugates: an overview. Plant Growth Regulation 15(3): 247–260.

    Article  CAS  Google Scholar 

  • Singh, S.D., and G.P. Rao. 2005. Stevia: The herbal sugar of 21st century. Sugar Tech 7(1): 17–24.

    Article  CAS  Google Scholar 

  • Swarup, Ranjan, Geraint Parry, Neil Graham, Trudie Allen, and Malcolm Bennett. 2002. Auxin cross-talk: integration of signalling pathways to control plant development. Plant Molecular Biology 49: 411–426.

    Article  CAS  PubMed  Google Scholar 

  • Valio, I.F.M., and Rosely F. Rocha. 1977. Effect of photoperiod and growth regulator on growth and flowering of Stevia rebaudiana Bertoni. Japanese Journal of Crop Science 46(2): 243–248.

    Article  CAS  Google Scholar 

  • Vandenbussche, Filip, Ronald Pierik, Frank F. Millenaar, L.A. Voesenek, and Dominique Van Der Straeten. 2005. Reaching out of the shade. Current Opinion in Plant Biology 8(5): 462–468.

    Article  CAS  PubMed  Google Scholar 

  • Vandesompele, J., Katleen De Preter, Filip Pattyn, Bruce Poppe, Nadine Van Roy, Anne De Paepe, and Frank Speleman. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 3(7): research0034-1.

    Article  Google Scholar 

  • Yamaguchi, S. 2008. Gibberellin metabolism and its regulation. Annual Review of Plant Biology 59: 225–251.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S. rebaudiana was provided by Michiho Ito, Associate Professor, Graduate School and Faculty of Pharmaceutical Sciences, Kyoto University. This work has been partly supported by the programs of the Grant-in-Aid for Scientific Research (B, 25292150) from the Japan Society for the Promotion of Science.

Funding

This work has been partly supported by the programs of the Grant-in-Aid for Scientific Research (B) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Shimizu.

Ethics declarations

Conflict of interest

Hiroshi Shimizu has received research grants from the Japan Society for the Promotion of Science and has no conflict of interest. All remaining authors also have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoneda, Y., Shimizu, H., Nakashima, H. et al. Effect of Treatment with Gibberellin, Gibberellin Biosynthesis Inhibitor, and Auxin on Steviol Glycoside Content in Stevia rebaudiana Bertoni. Sugar Tech 20, 482–491 (2018). https://doi.org/10.1007/s12355-017-0561-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-017-0561-3

Keywords

Navigation