Skip to main content
Log in

Megasonic Separation of Food Droplets and Particles: Design Considerations

  • Review Article
  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

The design aspects for building a megasonic reactor for separation of food materials from liquid/liquid or solid/liquid mixtures are presented in this review. These aspects are based on the theoretical principles of acoustic particle manipulation such as the acoustic primary and secondary radiation forces, acoustic streaming and the properties of food materials. Key considerations for the design of megasonic reactors are reviewed, which include the transducer selection, positioning and alignment, as well as construction materials and geometry of transducers and reactor. The design of these reactors is discussed around various food applications including palm oil separation, milk fat separation and fractionation, yeast separation in fermentation processes and separation of microalgae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Alegria AE, Lion Y, Kondo T, Riesz P (1989) Sonolysis of aqueous surfactant solutions: probing the interfacial region of cavitation bubbles by spin trapping. J Phys Chem 93:4908–4913

    Article  CAS  Google Scholar 

  2. AOAC (1997) Fat (crude) or ether extract in animal feed. AOAC official method 920.39. In: Official methods of analysis of AOAC International, 16th edn, Gaithersburg, MD, p 25

  3. Ashokkumar M, Sunartio D, Kentish S, Mawson R, Simons L, Vilkhu K, Versteeg C (2008) Modification of food ingredients by ultrasound to improve functionality: a preliminary study on a model system. Innov Food Sci Emerg Technol 9:155–160

    Article  CAS  Google Scholar 

  4. Augustin MA, Juliano P, Swiergon P, Knoerzer K, Mawson R (2012) Vegetable oil extraction (patent)

  5. Augustsson P (2010) Extraction of circulating tumor cells from blood using acoustophoresis. In: Micro total analysis systems. Groningen, Netherlands

  6. Azar L (2009) Cavitation in ultrasonic cleaning and cell disruption. www.cemag.us. Accessed 19-5-2014

  7. Azar L (2012) Apparatus for measuring cavitation energy profiles. US 6,450,184B1 (patent)

  8. Barnkob R, Augustsson P, Laurell T, Bruus H (2010) Measuring the local pressure amplitude in microchannel acoustophoresis. Lab Chip 10:563–570

    Article  CAS  Google Scholar 

  9. Barron W (2015) Principles of infrared thermometry. www.omega.com/temperature/z/pdf/z059-062.pdf Accessed 13-1-2015

  10. Bjerknes V (1909) Die Wissenschaft: Sammlung naturwissenschaftlicher and mathematischer Monographien. F. Vieweg, Braunschweig

    Google Scholar 

  11. Bosma R, van Spronsen WA, Tramper J, Wijffels RH (2003) Ultrasound, a new separation technique to harvest microalgae. J Appl Phycol 15:143–153

    Article  Google Scholar 

  12. Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577

    Article  CAS  Google Scholar 

  13. Bruus H (2012) Acoustofluidics 7: the acoustic radiation force on small particles. Lab Chip 12:1014–1021

    Article  CAS  Google Scholar 

  14. Buckow R, Baumann P, Schroeder S, Knoerzer K (2011) Effect of dimensions and geometry of co-field and co-linear pulsed electric field treatment chambers on electric field strength and energy utilisation. J Food Eng 105:545–556

    Article  Google Scholar 

  15. Buckow R, Schroeder S, Berres P, Baumann P, Knoerzer K (2010) Simulation and evaluation of pilot-scale pulsed electric field (PEF) processing. J Food Eng 101:67–77

    Article  Google Scholar 

  16. Buckow R, Semrau J, Sui Q, Wan J, Knoerzer K (2012) Numerical evaluation of lactoperoxidase inactivation during continuous pulsed electric field processing. Biotechnol Prog 28:1363–1375

    Article  CAS  Google Scholar 

  17. Burger W, Groeschl M, Trampler E, Benes E (1993) Frequency dependence of the acoustic loss distribution in piezoceramiclliquid resonators. Butterworth-Heinemann, Oxford, pp 507–510

    Google Scholar 

  18. Chemat F, Grondin I, Shum A, Sing C, Smadja J (2004) Deterioration of edible oils during food processing by ultrasound. Ultrason Sonochem 11:13–15

    Article  CAS  Google Scholar 

  19. Dukhin AS, Goetz PJ, Travers B (2005) Use of ultrasound for characterizing dairy products. J Dairy Sci 88:1320–1334

    Article  CAS  Google Scholar 

  20. Evander M, Nilsson J (2012) Acoustofluidics 20: applications in acoustic trapping. Lab Chip 12:4667–4676

    Article  CAS  Google Scholar 

  21. Gobetti M, Di Cagno R (2002) Hard Italian cheeses. In: Roginski H, Fox PF, Fuquay JW (eds) Encyclopedia of dairy sciences. Academic Press, London, pp 378–385

    Chapter  Google Scholar 

  22. Gogate PR, Sutkar VS, Pandit AB (2011) Sonochemical reactors: important design and scale up considerations with a special emphasis on heterogeneous systems. Chem Eng J 166:1066–1082

    Article  CAS  Google Scholar 

  23. Gorenflo VM, Smith L, Dedinsky B, Persson B, Piret JM (2002) Scale-up and optimization of an acoustic filter for 200 L/day perfusion of a CHO cell culture. Biotechnol Bioeng 80:438–444

    Article  CAS  Google Scholar 

  24. Gorkov LP (1962) On the forces acting on a small particle in an acoustic field in an ideal fluid. Sov Phys Dokl 6:773

    Google Scholar 

  25. Groeschl M (1998) Ultrasonic separation of suspended particles—part II: design and operation of separation devices. Acta Acust United Acust 84:632–642

    CAS  Google Scholar 

  26. Groschl M (1998) Ultrasonic separation of suspended particles—part I: fundamentals. Acustica 84:432–447

    Google Scholar 

  27. Hawkes JJ, Cefai JJ, Barrow DA, Coakley WT, Briarty LG (1998) Ultrasonic manipulation of particles in microgravity. J Phys D Appl Phys 31:1673–1680

    Article  CAS  Google Scholar 

  28. Hawkes JJ, Coakley WT (2001) Force field particle filter, combining ultrasound standing waves and laminar flow. Sens Actuators B Chem 75:213–222

    Article  CAS  Google Scholar 

  29. Johansson L, Evander M, Lilliehorn T, Almqvist M, Nilsson J, Laurell T, Johansson S (2013) Temperature and trapping characterization of an acoustic trap with miniaturized integrated transducers—towards in-trap temperature regulation. Ultrasonics 53:1020–1032

    Article  CAS  Google Scholar 

  30. Juliano P, Knoerzer K, Fryer P, Versteeg C (2009) C. botulinum inactivation kinetics implemented in a computational model of a high pressure sterilization process. Biotechnol Prog 25:163–175

    Article  CAS  Google Scholar 

  31. Juliano P, Swiergon P, Lee KH, Gee PT, Clarke PT, Augustin MA (2013) Effects of pilot plant-scale ultrasound on palm oil separation and oil quality. J Am Oil Chem Soc 90:1253–1260

    Article  CAS  Google Scholar 

  32. Juliano P, Swiergon P, Mawson R, Knoerzer K, Augustin MA (2013) Application of ultrasound for oil separation and recovery of palm Oil. J Am Oil Chem Soc 90:579–588

    Article  CAS  Google Scholar 

  33. Juliano P, Temmel S, Rout M, Swiergon P, Mawson R, Knoerzer K (2013) Creaming enhancement in a liter scale ultrasonic reactor at selected transducer configurations and frequencies. Ultrason Sonochem 20:52–62

    Article  CAS  Google Scholar 

  34. Juliano P, Torkamani AE, Leong T, Kolb V, Watkins P, Ajlouni S, Singh TK (2014) Lipid oxidation volatiles absent in milk after selected ultrasound processing. Ultrason Sonochem 21:2165–2175

    Article  CAS  Google Scholar 

  35. King L (1934) On the acoustic radiation pressure on spheres. Proc R Soc Lond 144:212–240

    Article  Google Scholar 

  36. Kinsler LE (2000) Fundamentals of acoustics. Wiley, New York

    Google Scholar 

  37. Knoerzer K, Buckow R, Juliano P, Chapman B, Versteeg C (2010) Carrier optimisation in a pilot-scale high pressure sterilisation plant—an iterative CFD approach. J Food Eng 97:199–207

    Article  Google Scholar 

  38. Knoerzer K, Chapman B (2011) Effect of material properties and processing conditions on the prediction accuracy of a CFD model for simulating high pressure thermal (HPT) processing. J Food Eng 104:404–413

    Article  Google Scholar 

  39. Knoerzer K, Juliano P, Gladman S, Versteeg C, Fryer P (2007) A computational model for temperature and sterility distributions in a pilot-scale high-pressure high-temperature process. AIChE J 53:2996–3010

    Article  CAS  Google Scholar 

  40. Knoerzer K, Juliano P, Roupas P, Versteeg C (2011) Innovative food processing technologies: advances in multiphysics simulation. Wiley, Ames. CABI:20113295478

  41. Koda S, Kimura T, Kondo T, Mitome H (2003) A standard method to calibrate sonochemical efficiency of an individual reaction system. Ultrason Sonochem 10:149–156

    Article  CAS  Google Scholar 

  42. Lamb H, Caflisch R (1993) Hydrodynamics. Cambridge University Press, Cambridge

    Google Scholar 

  43. Lamberti N, Ardia L, Albanese D, Di Matteo M (2009) An ultrasound technique for monitoring the alcoholic wine fermentation. Ultrasonics 49:94–97

    Article  CAS  Google Scholar 

  44. Leighton TG (1994) The acoustic bubble. Academic Press, San Diego

    Google Scholar 

  45. Lenshof A, Magnusson C, Laurell T (2012) Acoustofluidics 8: applications of acoustophoresis in continuous flow microsystems. Lab Chip 12:1210–1223

    Article  CAS  Google Scholar 

  46. Leong T, Johansson L, Juliano P, Mawson R, McArthur S, Manasseh R (2014) Design parameters for separation of fat from natural whole milk in an ultrasonic litre-scale vessel. Ultrason Sonochem 21:1289–1298

    Article  CAS  Google Scholar 

  47. Leong T, Johansson L, Juliano P, McArthur SL, Manasseh R (2013) Ultrasonic separation of particulate fluids in small and large scale systems: a review. Ind Eng Chem Res 52:16555–16576

    Article  CAS  Google Scholar 

  48. Leong T, Juliano P, Johansson L, Mawson R, McArthur SL, Manasseh R (2014) Temperature effects on the ultrasonic separation of fat from natural whole milk. Ultrason Sonochem 21:2092–2098

    Article  CAS  Google Scholar 

  49. Lighthill SJ (1978) Acoustic streaming. J Sound Vib 61:391–418

    Article  Google Scholar 

  50. Mason TJ, Cobley AJ, Graves JE, Morgan D (2011) New evidence for the inverse dependence of mechanical and chemical effects on the frequency of ultrasound. Ultrason Sonochem 18:226–230

    Article  CAS  Google Scholar 

  51. Mawson R, Rout M, Ripoll G, Swiergon P, Singh T, Knoerzer K, Juliano P (2014) Production of particulates from transducer erosion: implications on food safety. Ultrason Sonochem 21(6):2122–2130

    Article  CAS  Google Scholar 

  52. Mcclements DJ, Povey MJW (1989) Scattering of ultrasound by emulsions. J Phys D Appl Phys 22:38–47

    Article  CAS  Google Scholar 

  53. Mcclements DJ, Povey MJW, Jury M, Betsanis E (1990) Ultrasonic characterization of a food emulsion. Ultrasonics 28:266–272

    Article  Google Scholar 

  54. Mettin R, Akhatov I, Parlitz U, Ohl CD, Lauterborn W (1997) Bjerknes forces between small cavitation bubbles in a strong acoustic held. Phys Rev E 56:2924–2931

    Article  CAS  Google Scholar 

  55. Miles CA, Morley MJ, Hudson WR, Mackey BM (1995) Principles of separating micro-organisms from suspensions using ultrasound. J Appl Bacteriol 78:47–54

    Article  Google Scholar 

  56. Morris P, Hurrell A, Shaw A, Zhang E, Beard P (2009) A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure. J Acoust Soc Am 125:3611–3622

    Article  Google Scholar 

  57. Pangu GD, Feke DL (2009) Kinetics of ultrasonically induced coalescence within oil/water emulsions: modeling and experimental studies. Chem Eng Sci 64:1445–1454

    Article  CAS  Google Scholar 

  58. Petersson F (2007) On acoustic particle and cell manipulation in microfluidic systems. Lund University, Lund

    Google Scholar 

  59. Pingret D, Durand G, Fabiano-Tixier AS, Rockenbauer A, Ginies C, Chemat F (2012) Degradation of edible oil during food processing by ultrasound: electron paramagnetic resonance, physicochemical, and sensory appreciation. J Agric Food Chem 60:7761–7768

    Article  CAS  Google Scholar 

  60. Povey MJW, Mcclements DJ (1998) Ultrasonics in food engineering. Part I: introduction and experimental methods. J Food Eng 8:217–245

    Article  Google Scholar 

  61. ppb (2014) I. Ultrasonic tank mapping. http://www.megasonics.com/walkthru.html. Accessed 19-5-2014

  62. Sadhal SS (2012) Acoustofluidics 13: analysis of acoustic streaming by perturbation methods. Lab Chip 12:2292–2300

    Article  CAS  Google Scholar 

  63. Schmid M, Benes E, Sedlaczek R (1990) A computer-controlled system for the measurement of complete admittance spectra of piezoelectric resonators. Meas Sci Technol 1:970–975

    Article  Google Scholar 

  64. Servant G, Laborde JL, Hita A, Caltagirone JP, Gerard A (2001) Spatio-temporal dynamics of cavitation bubble clouds in a low frequency reactor: comparison between theoretical and experimental results. Ultrason Sonochem 8:163–174

    Article  CAS  Google Scholar 

  65. Shoitov YS, Otpushchennikov NF (1968) Pressure dependence of the speed of sound in liquid. Izvestiya VUZ. Fisika 11:137–139

    CAS  Google Scholar 

  66. Sonosys GmbH (2014) Megasonic power sensor. http://www.sonosys.eu/englisch/artikel/sonosys-megasonic-power-sensor-world-acutes-first-measuring-instrument-for-defining-the-cavitation-events-22457.html?utm_source=Newsletter&utm_medium=FIRMATICMail&utm_campaign=FIRMATICMail-27.03.2014-sonosys-e. Accessed 19-5-2014

  67. Soria AC, Villamiel M (2010) Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends Food Sci Technol 21:323–331

    Article  CAS  Google Scholar 

  68. Spengler J, Jekel M (2000) Ultrasound conditioning of suspensions–studies of streaming influence on particle aggregation on a lab-and pilot-plant scale. Ultrasonics 38:624–628

    Article  CAS  Google Scholar 

  69. Spengler J, Jekel M, Christensen KT, Adrian RJ, Hawkes JJ, Coakley WT (2000) Observation of yeast cell movement and aggregation in a small-scale MHz-ultrasonic standing wave field. Bioseparation 9:329–341

    Article  CAS  Google Scholar 

  70. Spengler JF, Coakley WT, Christensen KT (2003) Microstreaming effects on particle concentration in an ultrasonic standing wave. AIChE J 49:2773–2782

    Article  CAS  Google Scholar 

  71. Temmel S (2012) Enhanced separation of creaming in a megasonic cubic reactor. NurnbergInstitute of Chemical and Biological Engineering, Friedrich-Alexander- Universitat Erlangen-Nurnberg, Erlangen-

    Google Scholar 

  72. Tolt TL, Feke DL (1993) Separation of dispersed phases from liquids in acoustically driven chambers. Chem Eng Sci 48:527–540

    Article  CAS  Google Scholar 

  73. Torkamani AE, Juliano P, Ajlouni S, Sing TK (2014) Impact of ultrasound treatment on lipid oxidation of Cheddar cheese whey. Ultrason Sonochem 21:951–957

    Article  CAS  Google Scholar 

  74. Trampler F, Sonderhoff SA, Pui PWS, Kilburn DG, Piret JM (1994) Acoustic cell filter for high-density perfusion culture of hybridoma cells. Bio-Technology 12:281–284

    Article  CAS  Google Scholar 

  75. Trujillo FJ, Knoerzer K (2009) CFD modelling of the acoustic streaming induced by an ultrasonic horn reactor. In: Seventh international conference on CFD in the minerals and process industries, Melbourne, Australia

  76. Trujillo FJ, Eberhardt S, Muller D, Dual J, Knoerzer K (2013) Multiphysics modelling of the separation of suspended particles via frequency ramping of ultrasonic standing waves. Ultrason Sonochem 20:655–666

    Article  CAS  Google Scholar 

  77. Trujillo FJ, Juliano P, Barbosa-Cánovas G, Knoerzer K (2014) Separation of suspensions and emulsions via ultrasonic standing waves. A review. Ultrason Sonochem 21:2151–2164

    Article  CAS  Google Scholar 

  78. Trujillo FJ, Knoerzer K (2011) A computational modeling approach of the jet-like acoustic streaming and heat generation induced by low frequency high power ultrasonic horn reactors. Ultrason Sonochem 18:1263–1273

    Article  CAS  Google Scholar 

  79. Villamiel M, de Jong P (2000) Influence of high-intensity ultrasound and heat treatment in continuous flow on fat, proteins, and native enzymes of milk. J Agric Food Chem 48:472–478

    Article  CAS  Google Scholar 

  80. Woodside SM, Piret JM, Gröschl M, Benes E, Bowen BD (1998) Acoustic force distribution in resonators for ultrasonic particle separation. AIChE J 44:1976–1984

    Article  CAS  Google Scholar 

  81. Yantchev V, Enlund J, Katardjiev I, Johansson L (2010) A micromachined Stoneley acoustic wave system for continuous flow particle manipulation in microfluidic channels. J Micromech Microeng. doi:10.1088/0960-1317/20/3/035031

  82. Yosioka K, Kawasima Y (1955) Acoustic radiation pressure on a compressible sphere. Acustica 5:167–173

    Google Scholar 

  83. Zarembo LK (1971) Acoustic streaming. In: Rozenberg LD (ed) High intensity ultrasonic fields. Plenum Press, New York, pp 137–199

    Google Scholar 

  84. Zeqiri B, Gelat PN, Hodnett M, Lee ND (2003) A novel sensor for monitoring acoustic cavitation. Part I: concept, theory, and prototype development. IEEE Trans Ultrason Ferroelectr Freq Control 50:1342–1350

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the very insightful contributions of Mr. Johann Brunner and Mr. Joachim Straka from SONOSYS Ultraschallsysteme GmbH, Neuenbürg, Germany and Raymond Mawson from the Ultrasonics Team at the CSIRO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Juliano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leong, T., Knoerzer, K., Trujillo, F.J. et al. Megasonic Separation of Food Droplets and Particles: Design Considerations. Food Eng Rev 7, 298–320 (2015). https://doi.org/10.1007/s12393-015-9112-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-015-9112-4

Keywords

Navigation