Skip to main content
Log in

Fecal Contamination of Recreational Freshwaters: the Effect of Time-Independent Agroenvironmental Factors

  • Published:
Water Quality, Exposure and Health Aims and scope Submit manuscript

Abstract

Fecal contamination of recreational waters is a complex public health and environmental issue involving multiple possible sources and contributing factors. Agricultural and animal production activities represent one such source of contamination from which various microorganisms transmissible to humans can be found. This study used regression models to ascertain and describe various time-independent agroenvironmental determinants associated with fecal contamination of recreational lake waters. From a logistic regression model analysis, two determinants were statistically associated with the level of fecal coliforms, namely: the presence of ruminant production in the area of influence (OR=2.78) and urban area (OR=3.69). Moreover, our data suggest that sources of fecal contamination located within the area of the lake water catchment and from within a distance of two kilometers of the beach have the most influence on the water quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aitken M, Merrilees D, Duncan A (2001) Impact of agriculture practices and catchment characteristics on Ayshire Bathing waters. Scottish Executive Central Research Unit, Edinburgh

    Google Scholar 

  • Avery SM, Moore A, Hutchison ML (2004) Fate of Escherichia coli originating from livestock faeces deposited directly onto pasture. Lett Appl Microbiol 38(5):355–359

    Article  CAS  Google Scholar 

  • Avery LM, Killham K, Jones DL (2005) Survival of E. coli O157:H7 in organic wastes destined for land application. J Appl Microbiol 98(4):814–822

    Article  CAS  Google Scholar 

  • Beven KJ, Kirkny MJ (1979) A physically based, variable contributing area model of basin hydrology. Hydrol Sci Bull 24(1):43–69

    Article  Google Scholar 

  • Bruce MG, Curtis MB, Payne MM, Gautom RK, Thompson EC, Bennett AL, Kobayashi JM (2003) Lake-associated outbreak of Escherichia coli O157:H7 in Clark County, Washington, August 1999. Arch Pediatr Adolesc Med 157(10):1016–1021

    Article  Google Scholar 

  • Buon E, Trahan M (2007) Bilan des traitements des lisiers au Québec. Porcs (Québec) 18(3):35–38

    Google Scholar 

  • Burkholder J, Libra B, Weyer P, Heathcote S, Kolpin D, Thorne PS, Wichman M (2007) Impacts of waste from concentrated animal feeding operations on water quality. Environ Health Perspect 115(2):308–312

    Article  CAS  Google Scholar 

  • Calderon R, M E, Dufour A (1991) Health effects of swimmers and non-point sources of contaminated water. Int J Environ Health Res 1:21–31

    Article  Google Scholar 

  • CEAEQ (2005) Recherche et dénombrement des coliformes fécaux (thermotolérants) et confirmation à l’espèce Escherichia coli: méthode par filtration sur membrane. Centre d’expertise en analyse environnementale du Québec, Québec

    Google Scholar 

  • Chevalier P, Levallois P, Michel P (2004) Infections entériques d’origine hydrique potentiellement associées à la production animale: revue de la littérature. Vecteur Environ 37(2):90–106

    Google Scholar 

  • Colford JM Jr, Wade TJ, Schiff KC, Wright CC, Griffith JF (2007) Water quality indicators and the risk of illness at beaches with non-point sources of fecal contamination. Epidemiology 18:27–35

    Article  Google Scholar 

  • Craun GF, Calderon RL, Craun MF (2005) Outbreaks associated with recreational water in the United States. Int J Environ Health Res 15(4):243–262

    Article  Google Scholar 

  • Crowther J, Kay D, Wyer MD (2002) Faecal-indicator concentrations in waters draining lowland pastoral catchments in the UK: relationships with land use and farming practices. Water Res 36(7):1725–1734

    Article  CAS  Google Scholar 

  • Crowther J, Wyer MD, Bradford M, Kay D, Francis CA, Knisel WG (2003) Modelling faecal indicator concentrations in large rural catchments using land use and topographic data. J Appl Microbiol 94(6):962–973

    Article  CAS  Google Scholar 

  • Denault J-T, Rousseau AN, van Bochove E, Dechmi F (2008) Evaluating the propensity of saturation excess runoff using a topographic index (wetness index) with NHN and DEM GeoBase data. Agriculture and Agri-food Canada - Institut National de Recherche Scientifique (Centre Eau, Terre et Environnement), Quebec

    Google Scholar 

  • Denno DM, Kenne WE, Hutter CM, Koespsell JK, Patnode M, Hursh-Flodin D, Stewart LK, Duchin JS, Rasmussen L, Jones R, Tarr PI (2009) Tri-county comprehensive assessment of risk factors for sporadic reportable bacterial enteric infection in children. J Infect Dis 199:467–476

    Article  Google Scholar 

  • Dohoo I, Martin W, Strynh H (2003) Veterinary epidemiologic research, 1st edn. AVC Inc., Charlottetown (PEI)

    Google Scholar 

  • Duschesne L (2006) La situation démographique au Québec. Bilan 2006. Institut de la statistique du Québec, Québec. http://www.stat.gouv.qc.ca/publications/demograp/pdf2006/Bilan2006.pdf. Accessed June 2011

    Google Scholar 

  • Dwight RH, Baker DB, Semenza JC, Olson BH (2004) Health effects associated with recreational coastal water use: Urban versus rural California. Am J Publ Health 94(4):565–567

    Article  Google Scholar 

  • Dziuban EJ, Liang JL, Craun GF, Hill V, Yu PA, Painter J, Moore MR, Calderon RL, Roy SL, BM J (2006) Surveillance for waterborne-disease outbreaks associated with recreationnal water—United States, 2003–2004. CDC Morbidity and Mortality Weekly Report 55(12)

  • Feldman KA, Mohle-Boetani JC, Ward J, Furst K, Abbott SL, Ferrero DV, Olsen A, Werner SB (2002) A cluster of Escherichia coli O157: nonmotile infections associated with recreational exposure to lake water. Public Health Rep 117(4):380–385

    Google Scholar 

  • Fleisher JM, Fleming LE, Solo-Gabriele HM, Kish JK, Sinigalliano CD, Plano L, Elmir SM, Wang JD, Withum K, Shibata T, Gidley ML, Abdelzaher A, He GQ, Ortega C, Zhu XF, Wright M, Hollenbeck J, Backer LC (2010) The BEACHES study: health effects and exposures from non-point source microbial contaminants in subtropical recreational marine waters. Int J Epidemiol 39(5):1291–1298

    Article  Google Scholar 

  • Fleisher JMP, Kay DP, Salmon RLM, Jones FM, Wyer MDP, Godfree AFB (1996) Marine waters contaminated with domestic sewage: nonenteric illnesses associated with bather exposure in the United Kingdom. Am J Publ Health 86(9):1228–1234

    Article  CAS  Google Scholar 

  • Gelman A, Hill J (2007) Multilevel structures. In: Gelman A, Hill J (eds) Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, New York, pp 237–250

    Google Scholar 

  • GeoBase (2010) National hydro network (2010). GeoBase. http://www.geobase.ca/geobase/en/data/nhn/description.html. Accessed January 2010

  • Gerba CP (2000) Assessment of enteric patogen shedding by bathers during recreational activity and its impact on water quality. Quant Microbiol 2:55–68

    Article  Google Scholar 

  • Gessel PD, Hansen NC, Goyal SM, Johnston LJ, Webb J (2004) Persistence of zoonotic pathogens in surface soil treated with different rates of liquid pig manure. Appl Soil Ecol 25(3):237–243

    Article  Google Scholar 

  • Gouvernement du Québec (2004) Atlas Québec. Gouvernement du Québec. http://vuesensemble.atlas.gouv.qc.ca/site_web/accueil/index.htm. Accessed July 2011

  • Graczyk TK, Sunderland D, Tamang L, Lucy FE, Breysse PN (2007) Bather density and levels of Cryptosporidium, Giardia, and pathogenic microsporidian spores in recreational bathing water. Parasitol Res 101:1729–1731

    Article  Google Scholar 

  • Graczyk TK, Sunderland D, Awantang GN, Mashinski Y, Lucy FE, Graczyk Z, Chomicz L, Breysse PN (2010) Relationships among bather density, levels of human waterborne pathogens, and fecal coliform counts in marine recreational beach water. Parasitol Res 106(5):1103–1108

    Article  Google Scholar 

  • Haack SK, Fogarty LR, Wright C (2003) Escherichia coli and enterococci at beaches in the Grand Traverse Bay, Lake Michigan: Sources, characteristics, and environmental pathways. Environ Sci Technol 37(15):3275–3282

    Article  CAS  Google Scholar 

  • Health Canada (2009) Guidelines for Canadian recreational water quality, 3rd edn. Health Canada, ON, Canada

  • Hubbard RK, Newton GL, Hill GM (2004) Water quality and the grazing animal. J Anim Sci 82(E-Suppl):E255–263

    Google Scholar 

  • Hutchison ML, Walters LD, Avery SM, Synge BA, Moore A (2004) Levels of zoonotic agents in British livestock manures. Lett Appl Microbiol 39(2):207–214

    Article  CAS  Google Scholar 

  • INRS (1998) PHYSITEL Description. INRS-Water. http://www.ete.inrs.ca/activites/modeles/hydrotel/en/physitel.htm. Accessed January 2010

  • Iwamoto M, Hlady G, Jeter M, Burnett C, Drenzek C, Lance S, Benson J, Page D, Blake P (2005) Shigellosis among swimmers in a freshwater lake. South Med J 98(8):774–778

    Article  Google Scholar 

  • Kay D, Anthony S, Crowther J, Chambers BJ, Nicholson FA, Chadwick D, Stapleton CM, Wyer MD (2010) Microbial water pollution: A screening tool for initial catchment-scale assessment and source apportionment. Sci Total Environ 408(23):5649–5656

    Article  CAS  Google Scholar 

  • Kleinbaum DG, Klein M (2002) Logistic regression, a self-learning text, 2nd edn. Springer, Atlanta

    Google Scholar 

  • Laurin M (2008) Évaluation de performance des ouvrages municipaux d’assainissement des eaux pour l’année 2007. Ministères des affaires municipales, des régions et de l’occupation du territoire du Québec, Québec

    Google Scholar 

  • Love DC, Lovelace GL, Money ES, Sobsey MD (2010) Microbial fecal indicator concentrations in water and their correlation to envionmental parameters in nine geographically diverse estuaries. Water Qual Expo Health 2:85–95

    Article  Google Scholar 

  • Majdoub R, Côté C, Labadi M, Guay K, Généreux M (2003) Impact de l’utilisation des engrais de ferme sur la qualité microbiologique de l’eau souterraine. Québec, QC

  • MAPAQ (2005) Gestion intégrée des ressources en milieu agricole (GIRMA). Ministère de l’Agriculture, des Pêcheries et de l’Alimentation du Québec. http://www.quebecgeographique.gouv.qc.ca/approfondir/expertise/girma.asp. Accessed January 2010

  • Marsalek J, Rochfort Q (2004) Urban wet-weather flows: sources of fecal contamination impacting on recreational waters and threatening drinking-water sources. J Toxicol Environ Health A 67(20–22):1765–1777

    Article  CAS  Google Scholar 

  • Martel A (1996) Etude de la pollution microbiologique d’origine animale sur le littoral normand. Université Catholique de Lille, Lille

    Google Scholar 

  • McBride GB, Salmond CE, Bandaranayake DR, Turner SJ, Lewis GP, Till DG (1998) Health effects of marine bathing in New Zealand. Int J Environ Health Res 8:173–189

    Article  CAS  Google Scholar 

  • McKenney DW, Hutchinson MF, Kesteven JL, Venier LA (2001) Canadaś plant hardiness zones revisited using modern climate interpolation techniques. Can J Plant Sci 81:129–143

    Article  Google Scholar 

  • MDDEP (2004) Guide d’application du programme Environnement-Plage. Ministère du Développement Durable, de l’Environnement et des Parcs du Québec, Quebec

    Google Scholar 

  • MDDEP (2006) Programme Environnement-Plage. Ministère du Dévloppement Durable, de l’Environnement et des Parcs du Québec, Québec. http://www.mddep.gouv.qc.ca/programmes/env-plage/

    Google Scholar 

  • Moriarty EM, Sinton LW, Mackenzie ML, Karki N, Wood DR (2008) A survey of enteric bacteria and protozoans in fresh bovine faeces on New Zealand dairy farms. J Appl Microbiol 105(6):2015–2025

    Article  CAS  Google Scholar 

  • NRC (2007) Canada’s Plant Hradiness Site. National Resources Canada. http://planthardiness.gc.ca/ph_technicaldetails.pl?lang=en. Accessed November 2010

  • Olivieri VP, Kawata K, Lim SH (1989) Microbiological impacts of storm sewer overflows: Some aspects of the implication of microbiological indicators for receiving waters. In: Ellis JB (ed) Urban discharges and receiving water quality impacts. Oxford, pp 47–54

  • Olyphant GA, Whitman RL (2004) Elements of a predictive model for determining beach closures on a real time basis: The case of 63rd Street Beach Chicago. Environ Monit Assess 98(1–3):175–190

    Article  Google Scholar 

  • Payment P, Plante R, Cejka P (2001) Removal of indicator bacteria, human enteric viruses, Giardia cysts, and Cryptosporidium oocysts at a large wastewater primary treatment facility. Can J Microbiol 47(3):188–193

    CAS  Google Scholar 

  • Pond K (2005) Water recreation and disease, plausibility of associated infections: acute effects, sequelae and mortality. Emerging issues in water and infectious disease series. IWA Publishing, London

    Google Scholar 

  • Rodgers P, Soulsby C, Hunter C, Petry J (2003) Spatial and temporal bacterial quality of a lowland agricultural stream in northeast Scotland. Sci Total Environ 314–316:289–302

    Article  Google Scholar 

  • Sartorius B, Andersson Y, Velicko I, De Jong B, Löfdahl M, Hedlund K-O, Allestam G, Wangsell C, Bergstedt O, Horal P, Ulleryd P, Soderstrom A (2007) Outbreak of norovirus in Västra Götaland associated with recreational activities at two lakes during August 2004. Scand J Infect Dis 39(4):323–331

    Article  Google Scholar 

  • Schönberg-Norio D, Takkinen J, Hänninen M-L, Katila M-L, Kaukoranta S-S, Mattila L, Rautelin H (2004) Swimming and Campylobacter infections. Emerg Infect Dis 10(8):1474–1477

    Google Scholar 

  • Sinton LW, Braithwaite RR, Hall CH, Mackenzie ML (2007) Survival of indicator and pathogenic bacteria in bovine feces on pasture. Appl Environ Microbiol 73(24):7917–7925

    Article  CAS  Google Scholar 

  • Snidjers T, Bosker R (1999) Multilevel analysis. An introduction to basic and advanced multilevel modeling. Sage, London

    Google Scholar 

  • Soller JA, Schoen ME, Bartrand T, Ravenscroft JE, Ashbolt NJ (2010) Estimated human health risks from exposure to recreational waters impacted by human and non-human sources of faecal contamination. Water Res 44(16 Special Issue SI):4674–4691

    Article  CAS  Google Scholar 

  • Statistics Canada (2007) 2006 Census. Statistics Canada. http://www12.statcan.gc.ca/census-recensement/index-eng.cfm. Accessed August 2009

  • Trevisan D, Vansteelant JY, Dorioz JM (2002) Survival and leaching of fecal bacteria after slurry spreading on mountain hay meadows: consequences for the management of water contamination risk. Water Res 36(1):275–283

    Article  CAS  Google Scholar 

  • USEPA (2004) Report to Congress. Impacts and control of CSOs and SSOs. United States Environmental Protection Agency, Washington, D.C., USA

  • Warnemuende EA, Kanwar RS (2002) Effects of Swine manure application on bacterial quality of leachate from intact soil columns. Trans ASAE 45(6):1849–1857

    Google Scholar 

  • WHO (2003) Guidelines for safe recreationnal water environments. Coastal and fresh waters, vol 1. World Health Organization, Geneva

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Turgeon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turgeon, P., Michel, P., Levallois, P. et al. Fecal Contamination of Recreational Freshwaters: the Effect of Time-Independent Agroenvironmental Factors. Water Qual Expo Health 3, 109–118 (2011). https://doi.org/10.1007/s12403-011-0048-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12403-011-0048-5

Keywords

Navigation