Skip to main content
Log in

Simple column chromatography separation procedure for polycyclic aromatic hydrocarbons: controlling factor(s)

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The present study proposes a simple one-step column and less reagent-consuming experimental procedure for separating aromatic hydrocarbons, especially polycyclic aromatic hydrocarbon compounds (PAHs), in crude oils. Thus, the research aimed to determine the best and reliable column chromatography technique and identify the main controlling factor (s) a successful PAHs separation into sub-fractions. We found that the choice of the type of column is the requirement for a successful column chromatography separation. Using alumina and silica-alumina at a ratio of 1:1 for the separation of the aromatic fraction of crude oil from the Termit basin (Niger) into sub-fractions, our analysis revealed that, less time also less reagent-consuming, silica-alumina (1:1) column is chosen to be the best among the two columns (alumina and silica-alumina 1:1) for separating PAHs into various sub-fractions. Apart from the type of column, we found that the diameter of alumina pores is the main factor controlling a successful separation of the aromatic compounds into sub-fractions. This factor controls the time and the volume of reagent ratios necessary. Thus, using the following consecutive ratios of petroleum ether:dichloromethane at 93:7 (6 ml), 90:10 (30 ml), and 75:25 (20 ml), respectively mono-aromatic, di-aromatic, and tri-aromatic sub-fractions were successfully recovered, whereas further addition of 12 ml of pure dichloromethane effectively recovers compounds with more than 3 aromatic rings. Finally, stable carbon isotope data obtained in this current study confirmed that the procedure proposed here provides a reliable stable carbon isotope measurement of individual PAH with an average standard deviation of 0.5‰.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6
Fig.7
Fig. 8
Fig.9
Fig.10

Similar content being viewed by others

References

  • Alexander R, Kagi R, Rowland S, Sheppard P, Chirila T (1985) The effects of thermal maturity on distributions of dimethylnaphthalenes and trimethylnaphthalenes in some ancient sediments and petroleums. Geochim Cosmochim Acta 49(2):385–395

    Article  Google Scholar 

  • Asif M, Grice K, Fazeelat T (2009) Assessment of petroleum biodegradation using stable hydrogen isotopes of individual saturated hydrocarbon and polycyclic aromatic hydrocarbon distributions in oils from the Upper Indus Basin. Pakistan. Organic Geochemistry 40(3):301–311. https://doi.org/10.1016/j.orggeochem.2008.12.007

    Article  Google Scholar 

  • Asif M, Nazir A, Fazeelat T, Grice K, Nasir S, Saleem A (2011) Applications of polycyclic aromatic hydrocarbons to assess the source and thermal maturity of the crude oils from the Lower Indus Basin. Pakistan. Petroleum science and technology 29(21):2234–2246. https://doi.org/10.1080/10916461003699226

    Article  Google Scholar 

  • Boudreau S, Cooper W (1989) Analysis of thermally and chemically modified silica gels by heterogeneous gas-solid chromatography and infrared spectroscopy. Anal Chem 61(1):41–47. https://doi.org/10.1021/ac00176a010

    Article  Google Scholar 

  • Budzinski H, Garrigues P, Connan J, Devillers J, Domine D, Radke M, Oudins J (1995) Alkylated phenanthrene distributions as maturity and origin indicators in crude oils and rock extracts. Geochim Cosmochim Acta 59(10):2043–2056

    Article  Google Scholar 

  • Cesar J, Grice K (2017) δ13C of polycyclic aromatic hydrocarbons to establish the facies variations in a fluvial deltaic Triassic record (Dampier sub-Basin, Western Australia). Org Geochem 107:59–68. https://doi.org/10.1016/j.orggeochem.2017.03.001

    Article  Google Scholar 

  • Chen Y, Tian C, Li K, Cui X, Wu Y, Xia Y (2016) Influence of thermal maturity on carbon isotopic composition of individual aromatic hydrocarbons during anhydrous closed-system pyrolysis. Fuel 186:466–475. https://doi.org/10.1016/j.fuel.2016.08.102

    Article  Google Scholar 

  • Faramawy S, El-Naggar A, El-Fadly A, El-Sabagh S, Ibrahim A (2016) Silica, alumina and aluminosilicates as solid stationary phases in gas chromatography. Arab J Chem 9:S765–S775. https://doi.org/10.1016/j.arabjc.2011.08.015

    Article  Google Scholar 

  • Harouna M, Philp RP (2012) Potential petroleum source rocks in Termit basin. Niger J Pet Geol 35:165–186. https://doi.org/10.1111/j.1747-5457.2012.00524.x

    Article  Google Scholar 

  • Hayes HV, Wilson WB, Sander LC, Wise SA, Campiglia AD (2018) Determination of polycyclic aromatic hydrocarbons with molecular mass 302 in standard reference material 1597a by reversed-phase liquid chromatography and stop-flow fluorescence detection. Anal Methods 10(23):2668–2675. https://doi.org/10.1039/c8ay00760h

    Article  Google Scholar 

  • Jiang A, Zhou P, Sun Y, Xie L (2013) Rapid column chromatography separation of alkylnaphthalenes from aromatic components in sedimentary organic matter for compound specific stable isotope analysis. Org Geochem 60:1–8. https://doi.org/10.1016/j.orggeochem.2013.04.007

    Article  Google Scholar 

  • Kim MK (2004) Stable carbon isotope ratio of polycyclic aromatic hydrocarbons (PAHs) in the environment: validation of isolation and stable carbon isotope analysis methods. In: Texas A&M University,

  • Lai H, Li M, Liu J, Mao F, Xiao H, He W, Yang L (2018) Organic geochemical characteristics and depositional models of Upper Cretaceous marine source rocks in the Termit Basin. Niger Palaeogeogr, Palaeoclimatol, Palaeoecol 495:292–308. https://doi.org/10.1016/j.palaeo.2018.01.024

    Article  Google Scholar 

  • Le Metayer P, Grice K, Chow C, Caccetta L, Maslen E, Dawson D, Fusetti L (2014) The effect of origin and genetic processes of low molecular weight aromatic hydrocarbons in petroleum on their stable carbon isotopic compositions. Org Geochem 72:23–33. https://doi.org/10.1016/j.orggeochem.2014.04.008

    Article  Google Scholar 

  • Li Y, Liu Y, Jiang D, Xu J, Zhao X, Hou Y (2018) Effects of weathering process on the stable carbon isotope compositions of polycyclic aromatic hydrocarbons of fuel oils and crude oils. Mar Pollut Bull 133:852–860. https://doi.org/10.1016/j.marpolbul.2018.06.038

    Article  Google Scholar 

  • Lu X, Li M, Wang X, Wei T, Tang Y, Hong H, Wu C, Yang X, Liu Y (2021) Distribution and geochemical significance of rearranged hopanes in Jurassic source rocks and related oils in the center of the Sichuan Basin, China. ACS omega. https://doi.org/10.1021/acsomega.1c00252

  • Maslen E, Grice K, Le Métayer P, Dawson D, Edwards D (2011) Stable carbon isotopic compositions of individual aromatic hydrocarbons as source and age indicators in oils from western Australian basins. Organic Geochem 42(4):387–398. https://doi.org/10.1016/j.orggeochem.2011.02.005

    Article  Google Scholar 

  • Mazeas L, Budzinski H (2001) Polycyclic aromatic hydrocarbon 13C/12C ratio measurement in petroleum and marine sediments: application to standard reference materials and a sediment suspected of contamination from the Erika oil spill. J Chromatogr A 923(1–2):165–176

    Article  Google Scholar 

  • Mazeas L, Budzinski H, Raymond N (2002) Absence of stable carbon isotope fractionation of saturated and polycyclic aromatic hydrocarbons during aerobic bacterial biodegradation. Org Geochem 33(11):1259–1272

    Article  Google Scholar 

  • Morin C (2014) Préparation d'alumine à porosité contrôlée: étude de l'interaction de la boehmite dans des solvants et des propriétés fonctionnelles des matériaux résultants. In: Université Pierre et Marie Curie-Paris VI. https://tel.archives-ouvertes.fr/tel-01382486

  • Pule B, Mmualefe L, Torto N (2012) Analysis of polycyclic aromatic hydrocarbons in soil with agilent bond elut HPLC-FLD. Agilent application note

  • Radke M, Hilkert A, Rullkötter J (1998) Molecular stable carbon isotope compositions of alkylphenanthrenes in coals and marine shales related to source and maturity. Org Geochem 28(12):785–795

    Article  Google Scholar 

  • Ravanbakhsh S, Farahani A, Khajavi F, Baghaei P (2007) The comparison of silica gel-alumina sorbents for separation of PAHs and PCBs

  • Sinioja T (2016) Development of a liquid chromatography method to separate and fractionate EPA’s 16 priority polycyclic aromatic hydrocarbons (PAHs). In,

  • Strachan MG, Alexander R, Kagi RI (1988) Trimethylnaphthalenes in crude oils and sediments: effects of source and maturity. Geochim Cosmochim Acta 52(5):1255–1264

    Article  Google Scholar 

  • Sun Y, Chen Z, Xu S, Cai P (2005) Stable carbon and hydrogen isotopic fractionation of individual n-alkanes accompanying biodegradation: evidence from a group of progressively biodegraded oils. Organic Geochem 36(2):225–238. https://doi.org/10.1016/j.orggeochem.2004.09.002

    Article  Google Scholar 

  • Trolio R, Grice K, Fisher SJ, Alexander R, Kagi RI (1999) Alkylbiphenyls and alkyldiphenylmethanes as indicators of petroleum biodegradation. Org Geochem 30(10):1241–1253

    Article  Google Scholar 

  • van Aarssen BG, Bastow TP, Alexander R, Kagi RI (1999) Distributions of methylated naphthalenes in crude oils: indicators of maturity, biodegradation and mixing. Org Geochem 30(10):1213–1227

    Article  Google Scholar 

  • Wang Z, Liu Z, Xu K, Mayer LM, Zhang Z, Kolker AS, Wu W (2014) Concentrations and sources of polycyclic aromatic hydrocarbons in surface coastal sediments of the northern Gulf of Mexico. Geochem Trans 15(1):2. http://www.geochemicaltransactions.com/content/15/1/2

  • Wilson WB, Hayes HV, Sander LC, Campiglia AD, Wise SA (2017) Normal-phase liquid chromatography retention behavior of polycyclic aromatic hydrocarbon and their methyl-substituted derivatives on an aminopropyl stationary phase. Anal Bioanal Chem 409(22):5291–5305. https://doi.org/10.1007/s00216-017-0474-8

    Article  Google Scholar 

  • Wilson WB, Hayes HV, Sander LC, Campiglia AD, Wise SA (2018) Normal-phase liquid chromatography retention behavior of polycyclic aromatic sulfur heterocycles and alkyl-substituted polycyclic aromatic sulfur heterocycle isomers on an aminopropyl stationary phase. Anal Bioanal Chem 410(5):1511–1524. https://doi.org/10.1007/s00216-017-0795-7

    Article  Google Scholar 

  • Wilson WB, Sander LC, de Alda ML, Lee ML, Wise SA (2016) Retention behavior of alkyl-substituted polycyclic aromatic sulfur heterocycles in reversed-phase liquid chromatography. J Chromatogr A 1461:120–130. https://doi.org/10.1016/j.chroma.2016.07.065

    Article  Google Scholar 

  • Wise SA, Chesler S, Hertz HS, Hilpert L, May WE (1977) Chemically-bonded aminosilane stationary phase for the high-performance liquid chromatographic separation of polynuclear aromatic compounds. Anal Chem 49(14):2306–2310

    Article  Google Scholar 

  • Wise SA, Deissler A, Sander LC (1993) Liquid chromatographic determination of polycyclic aromatic hydrocarbon isomers of molecular weight 278 and 302 in environmental standard reference materials. Polycyclic Aromat Compd 3(3):169–184

    Article  Google Scholar 

  • Wise SA, Sander LC, Schantz MM (2015) Analytical methods for determination of polycyclic aromatic hydrocarbons (PAHs)—a historical perspective on the 16 US EPA priority pollutant PAHs. Polycyclic Aromat Compd 35(2–4):187–247. https://doi.org/10.1080/10406638.2014.970291

    Article  Google Scholar 

  • Xiao H, Wang T-G, Li M, Lai H, Liu J, Mao F, Tang Y (2019) Geochemical characteristics of Cretaceous Yogou Formation source rocks and oil-source correlation within a sequence stratigraphic framework in the Termit Basin. Niger J Pet Sci Eng 172:360–372. https://doi.org/10.1016/j.petrol.2018.09.082

    Article  Google Scholar 

  • Yang F, Wang T, Li M (2015) The distribution of triaromatic steroids and oil group classification of ordovician petroleum systems in the Cratonic Region of the Tarim Basin. NW China Petroleum Science and Technology 33(21–22):1794–1800. https://doi.org/10.1080/10916466.2015.1092984

    Article  Google Scholar 

  • Yanik PJ, O’Donnell TH, Macko SA, Qian Y, Kennicutt MC II (2003) The isotopic compositions of selected crude oil PAHs during biodegradation. Org Geochem 34(2):291–304

    Article  Google Scholar 

  • Zhang H, Wang C, Zhao R, Yin X, Zhou H, Tan L, Wang J (2016) New diagnostic ratios based on phenanthrenes and anthracenes for effective distinguishing heavy fuel oils from crude oils. Mar Pollut Bull 106(1–2):58–61. https://doi.org/10.1016/j.marpolbul.2016.03.036

    Article  Google Scholar 

  • Zhang M, Zhao H, Hong Y, Chen Z, Lin J (2014) The distribution characteristic and its significance of compound specific isotopic composition of aromatic hydrocarbon from marine source rock and oil in the Tarim Basin, western China. Sci China Earth Sci 57(11):2791–2798. https://doi.org/10.1007/s11430-014-4937-x

    Article  Google Scholar 

  • Zhao J, Li M (2016) The oil migration pathway and hydrocarbon charging history of petroleum systems in Termit Basin, Eastern Niger, Search and Discovery Article #80560

Download references

Funding

The National Natural Science Foundation of China (Grant No. 41972148) funded this study initiated by the State Key Laboratory of Hydrocarbon Resources and Exploration (China), University of Petroleum (Beijing), and College of Geosciences (Beijing) (102249).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meijun Li.

Ethics declarations

Conflict of interest

The authors declare that they no competing interests.

Additional information

Responsible Editor: Santanu Banerjee

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konan, N.F.D.S., Li, M., Shi, S. et al. Simple column chromatography separation procedure for polycyclic aromatic hydrocarbons: controlling factor(s). Arab J Geosci 15, 1350 (2022). https://doi.org/10.1007/s12517-022-10625-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-022-10625-1

Keywords

Navigation