Skip to main content

Advertisement

Log in

A GIS-based Spatial Prediction of Landslide Hazard Zones and Mapping in an Eastern Himalayan Hilly Region Using Large Scale Soil Mapping and Analytical Hierarchy Process

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Landslides are a serious threat to the sustainability of mountain ecosystems. In India, the Himalayan region suffered substantial economic loss and loss of life in the last couple of decades due to frequent landslides. However, identifying potential landslide hazard zones (LHZ) in eastern Himalayan regions helps to manage better and avoid economic losses. This study mapped LHZ of Mangan block, North Sikkim district, Sikkim state (India) in the eastern Himalayas, using GIS techniques. We carried out a landslide survey and characterized the soils at 1:10,000 scale, and used the analytical hierarchy process (AHP) method to map the LHZ using environmental (geology, land use/land cover, rainfall), terrain (elevation, slope, aspect, drainage density, lineament density), and soil (depth, texture, gravel content, erosion, land capability class) parameters. Relative rating values were assigned for the subclasses of each thematic layer based on their corresponding impact on the landslide triggers. Further, within a thematic layer, each class was assigned an ordinal rating from 1 to 9. The LHZ map of the Mangan block was produced based on weighted overly techniques. Higher weight was assigned for more influence, and lower weight was assigned for less influence of landslides. The results showed that high-intensity annual rainfall (~ 3000 mm), elevation (1000–3000 m), coarse soil texture, strong to steep slope (30–60%), geology (inter-banded Chlorite-sericlie and banded Migmatile), and high drainage density are the main causal factors of landslides. The LHZ map shows that the landslide hazard is moderate at 47%, high at 46%, and very high in 4.5% of the study area. Landslide hazard is high in areas with soils of Ringhim (RGM), Nampatam (NPM), Kazor (KZR), Singhik (SGK), and Siyam (SYM) series than in other soils. The LHZ map was validated using the field observations, and most of the recorded landslides (rockfall, debris flow, slope failure induced soil mass toppling, and earth flow) occurred in the moderate to high LHZs on the map. The LHZ map can be used for landslide hazard prevention, infrastructure development planning, and geo-environmental development in the Mangan block.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Acharyya, S. K. (1989). The Daling group, its nomenclature, tectonostratigraphy and structural grains: With notes on their possible equivalents. In daling group and related rocks. Geological Survey of India, 22, 5–14.

    Google Scholar 

  • Ahmed, B. (2015). Landslide susceptibility mapping using multi-criteria evaluation techniques in Chittagong Metropolitan Area, Bangladesh. Landslides, 12(6), 1077–1095. https://doi.org/10.1007/s10346-014-0521-x

    Article  Google Scholar 

  • Alexander, D. (2005). Vulnerability to landslides. In T. Glade, M. Anderson, & M. J. Crozier (Eds.), Landslide hazard and risk (pp. 175–198). Wiley.

    Chapter  Google Scholar 

  • Al-Subhi Al-Harbi, K. M. (2001). Application of the AHP in project management. International Journal of Construction Project Management, 19, 19–27.

    Google Scholar 

  • Anbalagan, R. (1992). Landslide hazard evaluation and zonation mapping in mountainous terrain. Journal of Engineering Geology, 32, 269–277.

    Article  Google Scholar 

  • Anbalagan, R., Kumar, R., Lakshmanan, K., Parida, S., & Neethu, S. (2015). Landslide hazard zonation mapping using frequency ratio and fuzzy logic approach, a case study of Lachung Valley, Sikkim. Geoenvironmental Disasters, 2, 1–17.

    Article  Google Scholar 

  • Arabameri, A., Pradhan, B., & Rezaei, K. (2019). Gully erosion zonation mapping using integrated geographically weighted regression with certainty factor and random forest models in GIS. Journal of Environmental Management, 232, 928–942.

    Article  Google Scholar 

  • Banerjee, P., Ghose, M. K., & Pradhan, R. (2018). Analytic hierarchy process and information value method based landslide susceptibility mapping and vehicle vulnerability assessment along a highway in Sikkim Himalaya. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-018-3488-4

    Article  Google Scholar 

  • Basu, S. K. (2013). Geology of Sikkim state and Darjeeling district of West Bengal. Geological Society of India.

    Google Scholar 

  • Baynes, F. J. (2008). Anticipating problem soils on linear projects. In Conference proceedings on problem soils in South Africa, 3–4 November 9–21.

  • Bera, A., Mukhopadhyay, B., & Das, D. (2018). Morphometric analysis of Adula River Basin in Maharashtra, India using GIS and Remote Sensing techniques. Geo-spatial data in natural resources (pp. 13–35). Gatha Cognition. https://doi.org/10.21523/gcb5.1702

    Chapter  Google Scholar 

  • Bera, A., Mukhopadhyay, B. P., & Das, D. (2019). Landslide Hazard Zonation Mapping using multiple criteria analysis with the help of GIS techniques: A case study from Eastern Himalayas, Namchi, South Sikkim. Natural Hazards, 96, 935–959.

    Article  Google Scholar 

  • Borrelli, L., Ciurleo, M., & Gullà, G. (2018). Shallow landslide susceptibility assessment in granitic rocks using GIS-based statistical methods: The contribution of the weathering grade map. Landslides, 15, 1127–1142.

    Article  Google Scholar 

  • Calligaris, C., Poretti, G., Tariq, S., & Melis, M. T. (2013). First steps towards a landslide inventory map of the Central Karakoram National Park. European Journal of Remote Sensing, 46(1), 272–287. https://doi.org/10.5721/eujrs20134615

    Article  Google Scholar 

  • Chen, Y., Khan, S., & Paydar, Z. (2010). To retire or expand? A fuzzy GIS-based spatial multi-criteria evaluation framework for irrigated agriculture. Irrigation and Drainage, 59(2), 174–188. https://doi.org/10.1002/ird.470

    Article  Google Scholar 

  • Chorley, R. J., Schumm, S. A., & Sugden, D. E. (1985). Geomorphology. Methuen.

    Google Scholar 

  • Chowdhuri, I., Pal, S. C., Arabameri, A., Thi Ngo, P. T., Chakrabortty, R., Malik, S., Das, B., & Roy, P. (2020). Ensemble approach to develop landslide susceptibility map in landslide dominated Sikkim Himalayan region, India. Environmental Earth Sciences, 79, 476. https://doi.org/10.1007/s12665-020-09227-5

    Article  Google Scholar 

  • Chowdhuri, I., Pal, S. C., Chakrabortty, R., Malik, S., Das, B., Roy, P., & Sen, K. (2021). Spatial prediction of landslide susceptibility using projected storm rainfall and land use in Himalayan region. Bulletin of Engineering Geology and the Environment. https://doi.org/10.1007/s10064-021-02252-z

    Article  Google Scholar 

  • Dai, F., & Lee, C. (2002). Landslide characteristics and slope instability modelling using GIS, Lantau Island, Hong Kong. Geomorphology, 42, 213–228.

    Article  Google Scholar 

  • Dai, F. C., Lee, C. F., Li, J., & Xu, Z. W. (2001). Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environmental Geology, 40, 381–391.

    Article  Google Scholar 

  • Dai, F. C., Lee, C. F., & Ngai, Y. Y. (2002). Landslide risk assessment and management: An overview. Engineering Geology, 64(1), 65–87. https://doi.org/10.1016/S0013-7952(01)00093-X

    Article  Google Scholar 

  • Das, D. K., & Agarwal, R. P. (2002). Physical properties of soil. Fundamental of soil science (pp. 75–77). Indian Society of Soil Science.

    Google Scholar 

  • Das, S., Mallik, J., Dhankhar, S., Suthar, N., Singh, A. K., Dutta, V., Gupta, U., Kumar, G., & Singh, R. (2020). Application of Fracture induced electromagnetic radiation (FEMR) technique to detect landslide-prone slip planes. Natural Hazards. https://doi.org/10.1007/s11069-020-03883-3

    Article  Google Scholar 

  • Dhakal, A. S., Amada, T., & Aniya, M. (2000). Landslide hazard mapping and its evaluation using GIS: An investigation of sampling schemes for grid-cell based quantitative method. Photogrammetric Engineering and Remote Sensing, 66, 981–989.

    Google Scholar 

  • Dikshit, A., Sarkar, R., Pradhan, B., Segoni, S., & Alamri, A. M. (2020). Rainfall induced landslide studies in Indian Himalayan region: A critical review. Applied Sciences, 10, 2466. https://doi.org/10.3390/app10072466

    Article  Google Scholar 

  • Feizizadeh, B., & Blaschke, T. (2012). GIS-multicriteria decision analysis for landslide susceptibility mapping: comparing three methods for the Urmia Lake basin, Iran. Natural Hazards, 65(3), 2105–2128. https://doi.org/10.1007/s11069-012-0463-3

    Article  Google Scholar 

  • Froude, M. J., & Petley, D. (2018). Global fatal landslide occurrence from 2004 to 2016. Natural Hazards and Earth System Sciences, 18, 2161–2181.

    Article  Google Scholar 

  • Geological Survey of India. (2020). Government of India; Retrieved from Dec 15, 2018. https://www.gsi.gov.in.

  • Greenway, D. R. (1987). Vegetation and slope stability. In M. G. Anderson & K. S. Richards (Eds.), slope stability (pp. 187–230). Wiley.

    Google Scholar 

  • Guzzetti, F., Carrara, A., Cardinali, M., & Reichenbach, P. (1999). Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31(1), 181–216. https://doi.org/10.1016/S0169-555X(99)00078-1

    Article  Google Scholar 

  • Jackson, M. L. (1973). Soil chemical analysis. Prentice Hall of India (Pvt.) Ltd.

    Google Scholar 

  • Kanwal, S., Atif, S., & Shafiq, M. (2016). GIS-based landslide susceptibility mapping of northern areas of Pakistan, a case study of Shigar and Shyok Basins. Geomatics, Natural Hazards and Risk. https://doi.org/10.1080/19475705.2016.1220023

    Article  Google Scholar 

  • Karim, Z., Hadji, R., & Hamed, Y. (2019). GIS-based approaches for the landslide susceptibility prediction in Setif Region (NE Algeria). Geotechnical and Geological Engineering, 37, 359–374.

    Article  Google Scholar 

  • Knapen, A., Kitutu, M. G., Poesen, J., Breugelmans, W., Deckers, J., & Muwanga, A. (2006). Landslides in a densely populated county at the footsteps of Mount Elgon (Uganda): Characteristics and causal factors. Geomorphology, 73, 149–165.

    Article  Google Scholar 

  • Kolat, C., Ulusay, R., & Suzen, M. L. (2012). Development of geotechnical microzonation model for Yenisehir (Bursa, Turkey) located at a seismically active region. Engineering Geology, 127, 36–53. https://doi.org/10.1016/j.enggeo.2011.12.014

    Article  Google Scholar 

  • Lalitha, M., Anil Kumar, K. S., Nair, K. M., Dharumarajan, S., Koyal, A., Khandal, S., Kaliraj, S., & Hegde, R. (2020). Evaluating pedogenesis and soil Atterberg limits for inducing landslides in the Western Ghats, Idukki District of Kerala, South India. Natural Hazards. https://doi.org/10.1007/s11069-020-04472-0

    Article  Google Scholar 

  • Lee, S., Ryu, J. H., Won, J. S., & Park, H. J. (2004). Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Engineering Geology, 71, 289–302.

    Article  Google Scholar 

  • Mandal, S., & Maiti, R. (2015). Impact assessment of hydrologic attributes and slope instability. Semi-quantitative approaches for landslide assessment and prediction (pp. 95–121). Springer.

    Google Scholar 

  • Martha, T. R., Roy, P., & Vinod Kumar, K. (2017). Assessment of the valley-blocking ‘So Bhir’ landslide near Mantam village, North Sikkim, India, using satellite images. Current Science, 113, 1228–1229.

    Google Scholar 

  • Mondal, S., & Mandal, S. (2020). Data-driven evidential belief function (EBF) model in exploring landslide susceptibility zones for the Darjeeling Himalaya, India. Geocarto International, 35, 818–856.

    Article  Google Scholar 

  • Montgomery, D. R., Schmidt, K. M., Dietrich, W. E., & Greenberg, H. M. (2000). Forest clearing and regional landsliding in the Pacific Northwest. Geology, 28, 311–314.

    Article  Google Scholar 

  • Mugagga, F., Kakembo, V., & Buyinza, M. (2011). A characterisation of the physical properties of soil and the implications for landslide occurrence on the slopes of Mount Elgon. Eastern Uganda: Natural Hazards. https://doi.org/10.1007/s11069-011-9896-3

    Book  Google Scholar 

  • Nsengiyumva, J. B., Luo, G., & Nahayo, L. (2018). Landslide susceptibility assessment using spatial multi-criteria evaluation model in Rwanda. International Journal of Environmental Research and Public Health, 15, 243.

    Article  Google Scholar 

  • Pal, S. C., & Chowdhuri, I. (2019). GIS-based spatial prediction of landslide susceptibility using frequency ratio model of Lachung River basin, North Sikkim, India. SN Applied Sciences, 1, 416.

    Article  Google Scholar 

  • Pal, S. C., Das, B., & Malik, S. (2019). Potential landslide vulnerability zonation using integrated analytic hierarchy process and GIS technique of upper Rangit catchment area West Sikkim India. Journal of the Indian Society of Remote Sensing. https://doi.org/10.1007/s12524-019-01009-2

    Article  Google Scholar 

  • Pandey, A., Dabral, P. P., Chowdary, V. M., & Yadav, N. K. (2008). Landslide hazard zonation using remote sensing and GIS: A case study of Dikrong river basin, Arunachal Pradesh, India. Environmental Geology, 54, 1517–1529.

    Article  Google Scholar 

  • Pandey, V. K., Sharmaa, K. K., Pourghasemic, H. R., & Bandooni, S. K. (2019). Sedimentological characteristics and application of machine learning techniques for landslide susceptibility modelling along the highway corridor Nahan to Rajgarh (Himachal Pradesh), India. CATENA, 182, 104150.

    Article  Google Scholar 

  • Patanakanog, B. (2001). Landslide hazard potential area in 3 dimension by remote sensing and GIS technique. Land Development Department, Thailand. www.ecy.wa.gov/programs/sea/landslides/help/drainage

  • Peethambaran, B., Anbalagan, R., Kanungo, D. P., Goswami, A., & Shihabudheen, K. V. (2020). A comparative evaluation of supervised machine learning algorithms for township level landslide susceptibility zonation in parts of Indian Himalayas. CATENA, 195, 104751.

    Article  Google Scholar 

  • Pham, B. T., Nguyen-Thoia, T., Qi, C., Phong, T. V., Doue, J., Ho, L. S., Le, H. V., & Prakash, I. (2020). Coupling RBF neural network with ensemble learning techniques for landslide susceptibility mapping. CATENA, 195, 104805.

    Article  Google Scholar 

  • Ramli, M. F., Yusof, N., Yusoff, M. K., Juahir, H., & Shafri, H. Z. M. (2010). Lineament mapping and its application in landslide hazard assessment: A review. Bulletin of Engineering Geology and the Environment, 69, 215–233.

    Article  Google Scholar 

  • Rawat, M. S., Rawat, B. S., Joshi, V., & Kimothi, M. M. (2012). Statistical analysis of landslide in south district, Sikkim, India: Using remote sensing and GIS. Journal of Environmental Science, Toxicology and Food Technology, 2, 47–61.

    Article  Google Scholar 

  • Reddy, R. S. (2006). Methodology for correlation of soil series in soil survey and mapping. Agropedology, 16(1), 1–11.

    Google Scholar 

  • Roth, R. A. (1983). Factors affecting landslide susceptibility in San Mateo County, California. Bulletin of Engineering Geology and the Environment, 20, 353–372.

    Google Scholar 

  • Saaty, T. L. (1980). The analytic hierarchy process. McGraw-Hill.

    Google Scholar 

  • Saha, A., Pal, S. C., Santosh, M., Janizadeh, S., Chowdhuri, I., Norouzi, A., Roy, P., & Chakrabortty, R. (2021). Modelling multi-hazard threats to cultural heritage sites and environmental sustainability: The present and future scenarios. Journal of Cleaner Production, 320, 128713. https://doi.org/10.1016/j.jclepro.2021.128713

    Article  Google Scholar 

  • Samra, J. S., & Sharma, U. C. (2002). Soil erosion and conservation (p. 162). Indian Society of Soil Science, IARI.

    Google Scholar 

  • Sengupta, A., Gupta, S., & Anbarasu, K. (2010). Rainfall thresholds for the initiation of landslide at Lanta Khola in north Sikkim, India. Natural Hazards, 52, 31–42.

    Article  Google Scholar 

  • Sharma, L. P., Patel, N., Debnath, P., & Ghose, M. K. (2012). Assessing landslide vulnerability from soil characteristics- a GIS-based analysis. Arabian Journal of Geosciences, 5, 789–796.

    Article  Google Scholar 

  • Shit, P. K., Bhunia, G. S., & Maiti, R. (2016). Potential landslide susceptibility mapping using weighted overlay model (WOM). Modeling Earth Systems and Environment, 2, 1–10.

    Google Scholar 

  • Sidle, R. C., Pearce, A. J., & Loughlin, C. L. O. (1985). Hillslope stability and land-use (p. 125). American Geophysical Union.

    Book  Google Scholar 

  • Singh, P., Gupta, A., & Singh, M. (2014). Hydrological inferences from watershed analysis for water resource management using remote sensing and GIS techniques. Egyptian Journal of Remote Sensing and Space Science, 17, 111–121.

    Article  Google Scholar 

  • Soil Survey Division Staff. (2017). ‘Soil survey manual.’ USDA agriculture handbook No 18. Government Printing Office.

    Google Scholar 

  • Soil Survey Staff. (2014). Keys to soil taxonomy (12th ed.). USDA-Natural Resources Conservation Service.

    Google Scholar 

  • Varnes, D. J. (1984). Landslide hazard zonation: A review of principles and practice. UNESCO Press.

    Google Scholar 

  • Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–38.

    Article  Google Scholar 

  • Yalcin, A. (2005). An investigation on Ardesen (Rize) region on the basis of landslide susceptibility. In Ph D Thesis, Karadeniz Technical University.

  • Zhang, G., Cai, Y., Zheng, Z., Zhen, J., Liu, Y., & Haung, K. (2016). Integration of the statistical index method and the analytic hierarchy process technique for the assessment of landslide susceptibility in Huizhou, China. CATENA, 142, 233–244.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Indian Council of Agricultural Research for funding this study. We also thank the villagers in Mangan block for providing information regarding landslide areas and the causes of observed landslides during our field inventory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Srinivasan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srinivasan, R., Vasu, D., Suputhra, S.A. et al. A GIS-based Spatial Prediction of Landslide Hazard Zones and Mapping in an Eastern Himalayan Hilly Region Using Large Scale Soil Mapping and Analytical Hierarchy Process. J Indian Soc Remote Sens 50, 1915–1930 (2022). https://doi.org/10.1007/s12524-022-01579-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-022-01579-8

Keywords

Navigation