Skip to main content

Advertisement

Log in

Review of CRISPR/Cas9 sgRNA Design Tools

  • Review
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

The adaptive immunity system in bacteria and archaea, Clustered Regularly Interspaced Short Palindromic Repeats, CRISPR-associate (CRISPR/Cas), has been adapted as a powerful gene editing tool and got a broad application in genome research field due to its ease of use and cost-effectiveness. The performance of CRISPR/Cas relies on well-designed single-guide RNA (sgRNA), so a lot of bioinformatic tools have been developed to assist the design of highly active and specific sgRNA. These tools vary in design specifications, parameters, genomes and so on. To help researchers to choose their proper tools, we reviewed various sgRNA design tools, mainly focusing on their on-target efficiency prediction model and off-target detection algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Koonin EV, Makarova KS (2009) CRISPR-Cas: an adaptive immunity system in prokaryotes. F1000 Biology Reports 1:95. https://doi.org/10.3410/B1-95

  2. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327(5962):167–170. https://doi.org/10.1126/science.1179555

    Article  CAS  PubMed  Google Scholar 

  3. Koonin EV, Makarova KS (2013) CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes. RNA Biol 10(5):679–686. https://doi.org/10.4161/rna.24022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471(7340):602–607. https://doi.org/10.1038/nature09886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  Google Scholar 

  6. Cong L, Zhang F (2015) Genome engineering using CRISPR-Cas9 system. Methods Mol Biol 1239:197–217. https://doi.org/10.1007/978-1-4939-1862-1_10

    Article  CAS  PubMed  Google Scholar 

  7. Heler R, Samai P, Modell JW, Weiner C, Goldberg GW, Bikard D, Marraffini LA (2015) Cas9 specifies functional viral targets during CRISPR-Cas adaptation. Nature 519(7542):199–202. https://doi.org/10.1038/nature14245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wyman C, Kanaar R (2006) DNA double-strand break repair: all’s well that ends well. Annu Rev Genet 40(1):363–383. https://doi.org/10.1146/annurev.genet.40.110405.090451

    Article  CAS  PubMed  Google Scholar 

  9. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152(5):1173–1183. https://doi.org/10.1016/j.cell.2013.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31(9):833–838. https://doi.org/10.1038/nbt.2675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, Guimaraes C, Panning B, Ploegh HL, Bassik MC, Qi LS, Kampmann M, Weissman JS (2014) Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159(3):647–661. https://doi.org/10.1016/j.cell.2014.09.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435(7042):646–651. https://doi.org/10.1038/nature03556

    Article  CAS  PubMed  Google Scholar 

  13. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646. https://doi.org/10.1038/nrg2842

    Article  CAS  PubMed  Google Scholar 

  14. Meng X, Noyes MB, Zhu LJ, Lawson ND, Wolfe SA (2008) Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 26(6):695–701. https://doi.org/10.1038/nbt1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gupta A, Meng X, Zhu LJ, Lawson ND, Wolfe SA (2011) Zinc finger protein-dependent and-independent contributions to the in vivo off- target activity of zinc finger nucleases. Nucleic Acids Res 39(1):381–392. https://doi.org/10.1093/nar/gkq787

    Article  CAS  PubMed  Google Scholar 

  16. Chu SW, Noyes MB, Christensen RG, Pierce BG, Zhu LJ, Weng Z, Stormo GD, Wolfe SA (2012) Exploring the DNA-recognition potential of homeodomains. Genome Res 22(10):1889–1898. https://doi.org/10.1101/gr.139014.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Enuameh MS, Asriyan Y, Richards A, Christensen RG, Hall VL, Kazemian M, Zhu C, Pham H, Cheng Q, Blatti C, Brasefield JA, Basciotta MD, Ou J, McNulty JC, Zhu LJ, Celniker SE, Sinha S, Stormo GD, Brodsky MH, Wolfe SA (2013) Global analysis of Drosophila Cys2-His2 zinc finger proteins reveals a multitude of novel recognition motifs and binding determinants. Genome Res 23(6):928–940. https://doi.org/10.1101/gr.151472.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shekar M, Venugopal MN (2017) Insight into a transcriptional adaptor zinc finger encoded by a putative protein in the white spot syndrome virus genome. Interdiscip Sci Comput Life Sci. https://doi.org/10.1007/s12539-017-0268-x

    Article  Google Scholar 

  19. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512. https://doi.org/10.1126/science.1178811

    Article  CAS  PubMed  Google Scholar 

  20. Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501. https://doi.org/10.1126/science.1178817

    Article  CAS  PubMed  Google Scholar 

  21. Bogdanove AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333:1843–1846. https://doi.org/10.1126/science.1204094

    Article  CAS  PubMed  Google Scholar 

  22. Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148. https://doi.org/10.1038/nbt.1755

    Article  CAS  PubMed  Google Scholar 

  23. Ding Q, Regan SN, Xia Y, Oostrom LA, Cowan CA, Musunuru K (2013) Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell 12(4):393–394. https://doi.org/10.1016/j.stem.2013.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ikmi A, McKinney SA, Delventhal KM, Gibson MC (2014) TALEN and CRISPR/Cas9-mediated genome editing in the early-branching metazoan Nematostella vectensis. Nat Commun 5:5486. https://doi.org/10.1038/ncomms6486

    Article  CAS  PubMed  Google Scholar 

  25. Smith C, Gore A, Yan W, Abalde-Atristain L, Li Z, He C, Wang Y, Brodsky RA, Zhang K, Cheng L, Ye Z (2014) Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs. Cell Stem Cell 15(1):12–13. https://doi.org/10.1016/j.stem.2014.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. https://doi.org/10.1126/science.1231143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826. https://doi.org/10.1126/science.1232033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Friedland AE, Tzur YB, Esvelt KM, Colaiácovo MP, Church GM, Calarco JA (2013) Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat Methods 10(8):741–743. https://doi.org/10.1038/nmeth.2532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gratz SJ, Cummings AM, Nguyen JN, Hamm DC, Donohue LK, Harrison MM, Wildonger J, O’Connor-Giles KM (2013) Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 194(4):1029–1035. https://doi.org/10.1534/genetics.113.152710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hou Z, Zhang Y, Propson NE, Howden SE, Chu LF, Sontheimer EJ, Thomson JA (2013) Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci USA 110(39):15644–15649. https://doi.org/10.1073/pnas.1313587110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JR, Joung JK (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31(3):227–229. https://doi.org/10.1038/nbt.2501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li D, Qiu Z, Shao Y, Chen Y, Guan Y, Liu M, Li Y, Gao N, Wang L, Lu X, Zhao Y, Liu M (2013) Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat Biotechnol 31(8):681–683. https://doi.org/10.1038/nbt.2661

    Article  CAS  PubMed  Google Scholar 

  33. Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154(6):1370–1379. https://doi.org/10.1016/j.cell.2013.08.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chakrapani V, Rasal KD, Kumar S, Mohapatra SD, Sundaray JK, Jayasankar P et al (2017) In silico analysis of nsSNPs of carp TLR22 gene affecting its binding ability with Poly I:C. Interdiscip Sci Comput Life Sci. https://doi.org/10.1007/s12539-017-0247-2

    Article  Google Scholar 

  35. Wang T, Wei JJ, Sabatini DM, Lander ES (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science 343(6166):80–84. https://doi.org/10.1126/science.1246981

    Article  CAS  PubMed  Google Scholar 

  36. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, Heckl D, Ebert BL, Root DE, Doench JG, Zhang F (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343(6166):84–87. https://doi.org/10.1126/science.1247005

    Article  CAS  PubMed  Google Scholar 

  37. Koike-Yusa H, Li Y, Tan EP, Velasco-Herrera MC, Yusa K (2014) Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol 32(3):267–273. https://doi.org/10.1038/nbt.2800

    Article  CAS  PubMed  Google Scholar 

  38. Wang T, Birsoy K, Hughes NW, Krupczak KM, Post Y, Wei JJ, Lander ES, Sabatini DM (2015) Identification and characterization of essential genes in the human genome. Science 350(6264):1096–1101. https://doi.org/10.1126/science.aac7041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tzelepis K, Koike-Yusa H, De Braekeleer E, Li Y, Metzakopian E, Dovey OM, Mupo A, Grinkevich V, Li M, Mazan M, Gozdecka M, Ohnishi S, Cooper J, Patel M, McKerrell T, Chen B, Domingues AF, Gallipoli P, Teichmann S, Ponstingl H, McDermott U, Saez-Rodriguez J, Huntly BJP, Iorio F, Pina C, Vassiliou GS, Yusa K (2016) A CRISPR dropout screen identifies genetic vulnerabilities and therapeutic targets in acute myeloid leukemia. Cell reports 17(4):1193–1205. https://doi.org/10.1016/j.celrep.2016.09.079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Horlbeck MA, Gilbert LA, Villalta JE, Adamson B, Pak RA, Chen Y, Fields AP, Park CY, Corn JE, Kampmann M, Weissman JS (2016) Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. ELife 5:e19760. https://doi.org/10.7554/eLife.19760

    Article  PubMed  PubMed Central  Google Scholar 

  41. Aguirre AJ, Meyers RM, Weir BA, Vazquez F, Zhang CZ, Ben-David U, Cook A, Ha G, Harrington WF, Doshi MB, Kost-Alimova M, Gill S, Xu H, Ali LD, Jiang G, Pantel S, Lee Y, Goodale A, Cherniack AD, Oh C, Kryukov G, Cowley GS, Garraway LA, Stegmaier K, Roberts CW, Golub TR, Meyerson M, Root DE, Tsherniak A, Hahn WC (2016) Genomic copy number dictates a gene-independent cell response to CRISPR/Cas9 targeting. Cancer Discov 6(8):914–929. https://doi.org/10.1158/2159-8290.CD-16-0154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen S, Sanjana NE, Zheng K, Shalem O, Lee K, Shi X, Scott DA, Song J, Pan JQ, Weissleder R, Lee H, Zhang F, Sharp PA (2015) Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160(6):1246–1260. https://doi.org/10.1016/j.cell.2015.02.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Meyers RM, Bryan JG, McFarland JM, Weir BA, Sizemore AE, Xu H, Dharia NV, Montgomery PG, Cowley GS, Pantel S, Goodale A, Lee Y, Ali LD, Jiang G, Lubonja R, Harrington WF, Strickland M, Wu T, Hawes DC, Zhivich VA, Wyatt MR, Kalani Z, Chang JJ, Okamoto M, Stegmaier K, Golub TR, Boehm JS, Vazquez F, Root DE, Hahn WC, Tsherniak A (2017) Computational correction of copy number effect improves specificity of CRISPR–Cas9 essentiality screens in cancer cells. Nat Genet 49(12):1779. https://doi.org/10.1038/ng.3984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yennmalli RM, Kalra S, Srivastava PA, Garlapati VK (2017) Computational tools and resources for crispr/cas 9 genome editing method. MOJ Proteom Bioinform 5(4):00164. https://doi.org/10.15406/mojpb.2017.05.00164

    Article  Google Scholar 

  45. Zhu LJ (2015) Overview of guide RNA design tools for CRISPR-Cas9 genome editing technology. Front Biol 10(4):289–296. https://doi.org/10.1007/s11515-015-1366-y

    Article  CAS  Google Scholar 

  46. Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32(3):279–284. https://doi.org/10.1038/nbt.2808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31(9):822–826. https://doi.org/10.1038/nbt.2623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J (2013) RNA-programmed genome editing in human cells. ELife 2:e00471. https://doi.org/10.7554/eLife.00471

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wong N, Liu W, Wang X (2015) WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system. Genome Biol 16:218. https://doi.org/10.1186/s13059-015-0784-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, Smith I, Tothova Z, Wilen C, Orchard R, Virgin HW, Listgarten J, Root DE (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34(2):184. https://doi.org/10.1038/nbt.3437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xu H, Xiao T, Chen CH, Li W, Meyer CA, Wu Q, Wu D, Cong L, Zhang F, Liu JS, Brown M, Liu XS (2015) Sequence determinants of improved CRISPR sgRNA design. Genome Res 25(8):1147–1157. https://doi.org/10.1101/gr.191452.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mendoza BJ, Trinh CT (2018) Enhanced guide-RNA design and targeting analysis for precise CRISPR genome editing of single and consortia of industrially relevant and non-model organisms. Bioinformatics 34(1):16–23. https://doi.org/10.1093/bioinformatics/btx564

    Article  PubMed  Google Scholar 

  53. Cao Q, Ma J, Chen CH, Xu H, Chen Z, Li W, Liu XS (2017) CRISPR-FOCUS: a web server for designing focused CRISPR screening experiments. PLoS One 12(9):e0184281. https://doi.org/10.1371/journal.pone.0184281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Malina A, Cameron CJ, Robert F, Blanchette M, Dostie J, Pelletier J (2015) PAM multiplicity marks genomic target sites as inhibitory to CRISPR-Cas9 editing. Nat Commun 6:10124. https://doi.org/10.1038/ncomms10124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Labuhn M, Adams FF, Ng M, Knoess S, Schambach A, Charpentier EM, Schwarzer A, Mateo JL, Klusmann JH, Heckl D (2018) Refined sgRNA efficacy prediction improves large- and small-scale CRISPR-Cas9 applications. Nucleic Acids Res 46(3):1375–1385. https://doi.org/10.1093/nar/gkx1268

    Article  PubMed  Google Scholar 

  56. Chari R, Mali P, Moosburner M, Church GM (2015) Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach. Nat Methods 12(9):823. https://doi.org/10.1038/nmeth.3473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chari R, Yeo NC, Chavez A, Church GM (2017) sgRNA Scorer 2.0: a species-independent model to predict CRISPR/Cas9 activity. ACS Synth Biol 6(5):902–904. https://doi.org/10.1021/acssynbio.6b00343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Moreno-Mateos MA, Vejnar CE, Beaudoin JD, Fernandez JP, Mis EK, Khokha MK, Giraldez AJ (2015) CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Methods 12(10):982. https://doi.org/10.1038/nmeth.3543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kuan PF, Powers S, He S, Li K, Zhao X, Huang B (2017) A systematic evaluation of nucleotide properties for CRISPR sgRNA design. BMC Bioinform 18(1):297. https://doi.org/10.1186/s12859-017-1697-6

    Article  Google Scholar 

  60. Ma J, Köster J, Qin Q, Hu S, Li W, Chen C, Cao Q, Wang J, Mei S, Liu Q, Xu H, Liu XS (2016) CRISPR-DO for genome-wide CRISPR design and optimization. Bioinformatics 32(21):3336–3338. https://doi.org/10.1093/bioinformatics/btw476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lin Y, Cradick TJ, Brown MT, Deshmukh H, Ranjan P, Sarode N, Wile BM, Vertino PM, Stewart FJ, Bao G (2014) CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res 42(11):7473–7485. https://doi.org/10.1093/nar/gku402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31(9):827–832. https://doi.org/10.1038/nbt.2647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31:839–843. https://doi.org/10.1038/nbt.2673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cradick TJ, Fine EJ, Antico CJ, Bao G (2013) CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res 41(20):9584–9592. https://doi.org/10.1093/nar/gkt714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cho SW, Kim S, Kim Y, Kweon J, Kim HS, Bae S, Kim JS (2014) Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res 24(1):132–141. https://doi.org/10.1101/gr.162339.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, Wyvekens N, Khayter C, Iafrate AJ, Le LP, Aryee MJ, Joung JK (2015) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33(2):187. https://doi.org/10.1038/nbt.3117

    Article  CAS  PubMed  Google Scholar 

  67. Perez AR, Pritykin Y, Vidigal JA, Chhangawala S, Zamparo L, Leslie CS, Ventura A (2017) GuideScan software for improved single and paired CRISPR guide RNA design. Nat Biotechnol 35(4):347–349. https://doi.org/10.1038/nbt.3804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Stemmer M, Thumberger T, Del Sol Keyer M, Wittbrodt J, Mateo JL (2017) CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. Plos One 12(4):e0176619. https://doi.org/10.1371/journal.pone.0176619

    Article  PubMed  PubMed Central  Google Scholar 

  69. Singh R, Kuscu C, Quinlan A, Qi Y, Adli M (2015) Cas9-chromatin binding information enables more accurate CRISPR off-target prediction. Nucleic Acids Res 43(18):e118. https://doi.org/10.1093/nar/gkv575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Graham DB, Root DE (2015) Resources for the design of CRISPR gene editing experiments. Genome Biol 16:260. https://doi.org/10.1186/s13059-015-0823-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Jakočiūnas T, Jensen MK, Keasling JD (2015) CRISPR/Cas9 advances engineering of microbial cell factories. Metab Eng 34:44–59. https://doi.org/10.1016/j.ymben.2015.12.003

    Article  PubMed  CAS  Google Scholar 

  72. Oliveros JC, Mònica F, Daniel TM, David SL, Lluis M, Pilar C et al (2016) Breaking-Cas—interactive design of guide RNAs for CRISPR-Cas experiments for ENSEMBL genomes. Nucleic Acids Res 44(W1):W267. https://doi.org/10.1093/nar/gkw407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhu H, Misel L, Graham M, Robinson ML, Liang C (2016) CT-Finder: a web service for CRISPR optimal target prediction and visualization. Sci Rep 6:25516. https://doi.org/10.1038/srep25516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31(3):233–239. https://doi.org/10.1038/nbt.2508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M, Smith I, Sullender M, Ebert BL, Xavier RJ, Root DE (2014) Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol 32(12):1262. https://doi.org/10.1038/nbt.3026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Heigwer F, Kerr G, Boutros M (2014) E-CRISP: fast CRISPR target site identification. Nat Methods 11(2):122–123. https://doi.org/10.1038/nmeth.2812

    Article  CAS  PubMed  Google Scholar 

  77. Montague TG, Cruz JM, Gagnon JA, Church GM, Valen E (2014) CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res 42(Web Server issue):W401–W407. https://doi.org/10.1093/nar/gku410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Labun K, Montague TG, Gagnon JA, Thyme SB, Valen E (2016) CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res 44(W1):W272–W276. https://doi.org/10.1093/nar/gkw398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhu LJ, Holmes BR, Aronin N, Brodsky MH (2014) CRISPRseek: a bioconductor package to identify target-specific guide RNAs for CRISPR-Cas9 genome-editing systems. Plos One 9(9):e108424. https://doi.org/10.1371/journal.pone.0108424

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Bae S, Park J, Kim JS (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30(10):1473. https://doi.org/10.1093/bioinformatics/btu048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Naito Y, Hino K, Bono H, Ui-Tei K (2015) CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31(7):1120–1123. https://doi.org/10.1093/bioinformatics/btu743

    Article  CAS  PubMed  Google Scholar 

  82. MacPherson CR, Scherf A (2015) Flexible guide-RNA design for CRISPR applications using Protospacer Workbench. Nat Biotechnol 33(8):805. https://doi.org/10.1038/nbt.3291

    Article  CAS  PubMed  Google Scholar 

  83. O’Brien A, Bailey TL (2014) GT-Scan: identifying unique genomic targets. Bioinformatics 30(18):2673–2675. https://doi.org/10.1093/bioinformatics/btu354

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Prykhozhij SV, Rajan V, Gaston D, Berman JN (2015) CRISPR multiTargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. PLoS One 10(3):e0119372. https://doi.org/10.1371/journal.pone.0119372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Heigwer F, Zhan T, Breinig M, Winter J, Brügemann D, Leible S, Boutros M (2016) CRISPR library designer (CLD): software for multispecies design of single guide RNA libraries. Genome Biol 17(1):55. https://doi.org/10.1186/s13059-016-0915-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Housden BE, Valvezan AJ, Kelley C, Sopko R, Hu Y, Roesel C, Lin S, Buckner M, Tao R, Yilmazel B, Mohr SE, Manning BD, Perrimon N (2015) Identification of potential drug targets for tuberous sclerosis complex by synthetic screens combining CRISPR-based knockouts with RNAi. Sci Signal 8(393):rs9. https://doi.org/10.1126/scisignal.aab3729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Ren X, Yang Z, Xu J, Sun J, Mao D, Hu Y, Yang SJ, Qiao HH, Wang X, Hu Q, Deng P, Liu LP, Ji JY, Li JB, Ni JQ (2014) Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila. Cell Rep 9(3):1151–1162. https://doi.org/10.1016/j.celrep.2014.09.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Farboud B, Meyer BJ (2015) Dramatic enhancement of genome editing by CRISPR/Cas9 through improved guide RNA design. Genetics 199(4):959–971. https://doi.org/10.1534/genetics.115.175166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Haeussler M, Schönig K, Eckert H, Eschstruth A, Mianné J, Renaud JB, Schneider-Maunoury S, Shkumatava A, Teboul L, Kent J, Joly JS, Concordet JP (2016) Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol 17(1):148. https://doi.org/10.1186/s13059-016-1012-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Labaj W, Papiez A, Polanski A, Polanska J (2017) Comprehensive analysis of MILE gene expression data set advances discovery of leukaemia type and subtype biomarkers. Interdiscip Sci Comput Life Sci 9(1):24–35. https://doi.org/10.1007/s12539-017-0216-9

    Article  CAS  Google Scholar 

  91. Pei Z, Liu J, Liu M, Zhou W, Yan P, Wen S et al (2018) Risk-predicting model for incident of essential hypertension based on environmental and genetic factors with support vector machine. Interdiscip Sci Comput Life Sci. https://doi.org/10.1007/s12539-017-0271-22016

    Article  Google Scholar 

  92. Pulido-Quetglas C, Aparicio-Prat E, Arnan C, Polidori T, Hermoso T, Palumbo E, Ponomarenko J, Guigo R, Johnson AK (2017) Scalable design of paired CRISPR guide RNAs for genomic deletion. PLOS Comput Biol 13(3):e1005341. https://doi.org/10.1371/journal.pcbi.1005341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Rahman MK, Rahman MS (2017) CRISPRpred: a flexible and efficient tool for sgRNAs on-target activity prediction in CRISPR/cas9 systems. Plos One 12(8):e0181943. https://doi.org/10.1371/journal.pone.0181943

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Hough SH, Kancleris K, Brody L, Humphryes-Kirilov N, Wolanski J, Dunaway K, Ajetunmobi A, Dillard V (2017) Guide Picker is a comprehensive design tool for visualizing and selecting guides for CRISPR experiments. BMC Bioinform 18:167. https://doi.org/10.1186/s12859-017-1581-4

    Article  CAS  Google Scholar 

  95. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J Roy Stat Soc 67(2):301–320

    Article  Google Scholar 

  96. Xiong Y, Xie X, Wang Y, Ma W, Liang P, Songyang Z, Dai Z (2017) pgRNAFinder: a web-based tool to design distance independent paired-gRNA. Bioinformatics 33(22):3642–3644. https://doi.org/10.1093/bioinformatics/btx472

    Article  PubMed  PubMed Central  Google Scholar 

  97. Chuai GH, Wang QL, Qi L (2016) In silico meets in vivo: towards computational CRISPR-based sgRNA design. Trends Biotechnol 35(1):12. https://doi.org/10.1016/j.tibtech.2016.06.008

    Article  PubMed  CAS  Google Scholar 

  98. Efron B, Hastie T, Johnstone I, Tibshirani R (2004) Least angle regression. Ann Stat 32:407–451

    Article  Google Scholar 

  99. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760. https://doi.org/10.1093/bioinformatics/btp324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25. https://doi.org/10.1186/gb-2009-10-3-r25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Brazelton VA Jr, Zarecor S, Wright DA, Wang Y, Liu J, Chen K, Yang B, Lawrence-Dill CJ (2015) A quick guide to CRISPR sgRNA design tools. Gm Crops Food 6(4):266–276. https://doi.org/10.1080/21645698.2015.1137690

    Article  PubMed  Google Scholar 

  102. Xie S, Shen B, Zhang C, Huang X, Zhang Y (2014) sgRNAcas9: a software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites. Plos One 9(6):e100448. https://doi.org/10.1371/journal.pone.0100448

    Article  PubMed  PubMed Central  Google Scholar 

  103. Abadi S, Yan WX, Amar D, Mayrose I (2017) A machine learning approach for predicting CRISPR-Cas9 cleavage efficiencies and patterns underlying its mechanism of action. PLoS Comput Biol 13(10):e1005807. https://doi.org/10.1371/journal.pcbi.1005807

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Zhu H, Richmond E, Liang C (2018) CRISPR-RT: a web application for designing CRISPR-C2c2 crRNA with improved target specificity. Bioinformatics 34(1):117–119. https://doi.org/10.1093/bioinformatics/btx580

    Article  PubMed  Google Scholar 

  105. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163(3):759. https://doi.org/10.1016/j.cell.2015.09.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fonfara I, Le Rhun A, Chylinski K, Makarova KS, Lécrivain AL, Bzdrenga J, Koonin EV, Charpentier E (2014) Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res 42(4):2577–2590. https://doi.org/10.1093/nar/gkt1074

    Article  CAS  PubMed  Google Scholar 

  107. Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154(6):1380–1389. https://doi.org/10.1016/j.cell.2013.08.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mccaffrey J, Sibert J, Zhang B, Zhang Y, Hu W, Riethman H et al (2016) CRISPR-Cas9 D10A nickase target-specific fluorescent labeling of double strand DNA for whole genome mapping and structural variation analysis. Nucleic Acids Res 44(2):e11-e11. https://doi.org/10.1093/nar/gkv878

    Article  CAS  Google Scholar 

  109. Chang L, Sun C, Chen X, Yang W, Zhang J, Zhang Y et al. (2017). Knocking out of human DNAH2 gene in U2OS cells by CRISPR/Cas9n double nick system. Sheng Wu Gong Cheng Xue Bao. https://doi.org/10.13345/j.cjb.160273

    Article  PubMed  Google Scholar 

  110. Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, Goodwin MJ, Aryee MJ, Joung JK (2014) Dimeric CRISPR RNA-guided FokI-dCas9 nucleases directed by truncated gRNAs for highly specific genome editing. Nat Biotechnol 32(6):569–576. https://doi.org/10.1038/nbt.2908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wu X, Scott DA, Kriz AJ, Chiu AC, Hsu PD, Dadon DB, Cheng AW, Trevino AE, Konermann S, Chen S, Jaenisch R, Zhang F, Sharp PA (2014) Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol 32(7):670–676. https://doi.org/10.1038/nbt.2889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kuscu C, Arslan S, Singh R, Thorpe J, Adli M (2014) Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol 32(7):677–683. https://doi.org/10.1038/nbt.2916

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like thank to Jingyu Amy Peng and Chen-Hao Chen from Harvard T.H. Chan School of Public Health, Shenglin Mei and Jian Ma from Tongji University for their discussion about this work. This work was supported by National Key R&D Program of China 2017YFB0202602, 2017YFC1311003, 2016YFC1302500, 2016YFB0200400, 2017YFB0202104; NSFC Grants 61772543, U1435222, 61625202, 61272056; the Funds of State Key Laboratory of Chemo/Biosensing and Chemometrics; the Fundamental Research Funds for the Central Universities; and Guangdong Provincial Department of Science and Technology under grant No. 2016B090918122.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoliang Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Y., Xu, J., Cheng, M. et al. Review of CRISPR/Cas9 sgRNA Design Tools. Interdiscip Sci Comput Life Sci 10, 455–465 (2018). https://doi.org/10.1007/s12539-018-0298-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-018-0298-z

Keywords

Navigation