Skip to main content
Log in

Modeling and characterization of as-welded microstructure of solid solution strengthened Ni-Cr-Fe alloys resistant to ductility-dip cracking Part II: Microstructure characterization

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In part II of this work is evaluated the as-welded microstructure of Ni-Cr-Fe alloys, which were selected and modeled in part I. Detailed characterization of primary and secondary precipitates, subgrain and grain structures, partitioning, and grain boundary morphology were developed. Microstructural characterization was carried out using optical microscopy, SEM, TEM, EBSD, and XEDS techniques. These results were analyzed and compared to modeling results displaying a good agreement. The Hf additions produced the highest waviness of grain boundaries, which were related to distribution of Hf-rich carbonitrides. Experimental evidences about Mo distribution into crystal lattice have provided information about its possible role in ductility-dip cracking (DDC). Characterization results of studied alloys were analyzed and linked to their DDC resistance data aiming to establish relationships between as-welded microstructure and hot deformation performance. Wavy grain boundaries, primary carbides distribution, and strengthened crystal lattice are metallurgical characteristics related to high DDC resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Unfried S. and A. J. Ramirez, Mater. Sci. Forum 706–709, 945 (2012).

    Article  Google Scholar 

  2. J. Unfried S., E. A. Torres, and A. J. Ramirez, Hot Cracking Phenomena in Welds III, 1st ed., p.295, Springer-Verlag, Berlin (2011).

    Book  Google Scholar 

  3. A. J. Ramirez and C. M. Garzón, Hot Cracking Phenomena in Welds II, p.427, Springer-Verlag, Berlin (2008).

    Book  Google Scholar 

  4. A. J. Ramirez, J. W. Sowards, and J. C. Lippold, J. Mater. Process. Technol. 179, 20, 212 (2006).

    Article  Google Scholar 

  5. N. E. Nissley and J. C. Lippold, Weld. J. 87, 257s (2008).

    Google Scholar 

  6. S. D. Kiser, R. Zhang, and B. A. Baker, Proc. 8th Int. Conf. of Trends in Welding Research, p.639, Pine-Mountain, GA, USA (2009).

    Google Scholar 

  7. Q. Y. Hou, Y. Z. He, Q. A. Zhang, and J. S. Gao, Mater. Des. 28, 1982 (2007).

    Article  Google Scholar 

  8. B. Hemsworth, T. Boniszewski, and N. F. Eaton, Met. Constr. Br. Weld. J. 1, 5 (1969).

    Google Scholar 

  9. F. N. Rhines and P. J. Wray, Trans. ASM 54, 117 (1961).

    Google Scholar 

  10. M. A. Abralov and R. U. Abdurakhmanov, Automation Welding 27, 7 (1974).

    Google Scholar 

  11. D. M. Haddrill and R. G. Baker, Br. Weld J. 12, 411 (1965).

    Google Scholar 

  12. A. J. Ramirez and J. C. Lippold, Mater. Sci. Eng. A 380, 259 (2004).

    Article  Google Scholar 

  13. F. F. Noecker II and J. N. DuPont, Weld. J. 88, 62s (2009).

    Google Scholar 

  14. E. A. Torres, R. Caram, and A. J. Ramirez, Mater. Sci. Forum 638–642, 2858 (2010).

    Article  Google Scholar 

  15. L. N. Zimina, N. N. Burova, and O. V. Makushok, Met. Sci. Heat Treat. 28, 130 (1986).

    Article  Google Scholar 

  16. P. S. Kotval, J. D. Venables, and R. W. Calder, Metall. Trans. 3, 453 (1972).

    Google Scholar 

  17. J. M. Dahl, W. F. Danesi, and R. G. Dunn, Metall. Trans. 4, 1087 (1973).

    Article  Google Scholar 

  18. J. M. Duhl and C. P. Sullivan, J. Met. 23, 38 (1971).

    Google Scholar 

  19. A. K. Jena and M. C. Chatuverdi, J. Mat. Sci. 19, 3121 (1984).

    Article  Google Scholar 

  20. R. A. Mulford and U. F. Kocks, Scr. Metall. 13, 729 (1979).

    Article  Google Scholar 

  21. A. Chabenat, D. Pierron, A. Thomas, F. Faure, and C. Guyon, Appl. No. 10/639,680. United States patent Pub. No. US 2004/0115086 A1 (2004).

  22. N. E. Nissley and J. C. Lippold, Weld. J. 88, 131s (2009).

    Google Scholar 

  23. M. J. Perricone and J. N. DuPont, Metall. Trans. A 37, 1267 (2006).

    Article  Google Scholar 

  24. T. Kraft and H. E. Exner, Mater. Sci. Technol. 14, 377 (1998).

    Article  Google Scholar 

  25. S. Kou, Welding Metallurgy, 2nd ed., Ch. 6, p.145, John Wiley & Sons, NY (2003).

    Google Scholar 

  26. R. Mehrabian and M. C. Flemings, Metall. Trans. 1, 455 (1970).

    Article  Google Scholar 

  27. V. H. De Alburquerque, C. C. Silva, T. I. Menezes, J. P. Farias, and J. M. Tavares, Microsc. Res. Tech. 74, 36 (2011).

    Article  Google Scholar 

  28. M. J. Donachie and S. J. Donachie, Superalloys: A Technical Guide, 2nd ed., Ch. 3, p.37, ASM International, USA (2002).

    Google Scholar 

  29. K. Stiller, Surf. Sci. 266, 402 (1992).

    Article  Google Scholar 

  30. Y. S. Lim, J. S. Kim, H. P. Kim, and H. D. Cho, J. Nucl. Mater. 335, 108 (2004).

    Article  Google Scholar 

  31. C. Radrakrisnha and K. Prasad-Rao, J. Mater. Sci. 32, 1977 (1997).

    Article  Google Scholar 

  32. K. Song and M. Aindow, Mater. Sci. Eng. A 479, 365 (2008).

    Article  Google Scholar 

  33. P. R. Rios, Acta Metall. 35, 2805 (1987).

    Article  Google Scholar 

  34. K. Song and M. Aindow, Metall. Mater. Trans. A 38, 1 (2007).

    Article  Google Scholar 

  35. K. N. Ramakrishnan, S. Venkadesan, and K. P. N. Murthy, Scr. Metall. Mater. 32, 685 (1995).

    Article  Google Scholar 

  36. J. Unfried S., C. M. R. Afonso, and A. J. Ramirez, Acta Microsc. 18C, 191 (2009).

    Google Scholar 

  37. G. A. Young, T. E. Capobianco, M. A. Penik, B. W. Morris, and J. J. McGee, Weld. J. 87, 31s (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jimy Unfried-Silgado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unfried-Silgado, J., Ramirez, A.J. Modeling and characterization of as-welded microstructure of solid solution strengthened Ni-Cr-Fe alloys resistant to ductility-dip cracking Part II: Microstructure characterization. Met. Mater. Int. 20, 307–315 (2014). https://doi.org/10.1007/s12540-014-1022-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-014-1022-0

Key words

Navigation