Skip to main content
Log in

Modeling and characterization of as-welded microstructure of solid solution strengthened Ni-Cr-Fe alloys resistant to ductility-dip cracking part I: Numerical modeling

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This work aims the numerical modeling and characterization of as-welded microstructure of Ni-Cr-Fe alloys with additions of Nb, Mo and Hf as a key to understand their proven resistance to ductility-dip cracking. Part I deals with as-welded structure modeling, using experimental alloying ranges and Calphad methodology. Model calculates kinetic phase transformations and partitioning of elements during weld solidification using a cooling rate of 100 K.s−1, considering their consequences on solidification mode for each alloy. Calculated structures were compared with experimental observations on as-welded structures, exhibiting good agreement. Numerical calculations estimate an increase by three times of mass fraction of primary carbides precipitation, a substantial reduction of mass fraction of M23C6 precipitates and topologically closed packed phases (TCP), a homogeneously intradendritic distribution, and a slight increase of interdendritic Molybdenum distribution in these alloys. Incidences of metallurgical characteristics of modeled as-welded structures on desirable characteristics of Ni-based alloys resistant to DDC are discussed here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Arkoosh and N. F. Fiore Metall. Trans. 3, 2235 (1972).

    Article  Google Scholar 

  2. W. Yeniscavich Weld. J. 45, 344s (1966).

    Google Scholar 

  3. B. Hemsworth, T. Boniszewski, and N. F. Eaton Met. Constr. Br. Weld. J. 1, 5 (1969).

    Google Scholar 

  4. F. N. Rhines and P. J. Wray Trans. ASM. 54, 117 (1961).

    Google Scholar 

  5. M. A. Abralov, and R. U. Abdurakhmanov Automation Welding 27, 7 (1974).

    Google Scholar 

  6. D. M. Haddrill and R. G. Baker Br. Weld J. 12, 411 (1965).

    Google Scholar 

  7. A. J. Ramirez and J. C. Lippold Mater. Sci. Eng. A 380, 259 (2004).

    Article  Google Scholar 

  8. F. F. Noecker II and J. N. DuPont Weld. J. 88, 7s (2009).

    Google Scholar 

  9. G. A. Young, T. E. Capobianco, M. A. Penik, B. W. Morris, and J. J. Mcgee Weld. J. 87, 31s (2008).

    Google Scholar 

  10. M. G. Collins, A. J. Ramirez, and J. C. Lippold Weld. J. 83, 39s (2004).

    Google Scholar 

  11. K. Nishimoto, K. Saida, and H. Okauchi Sci. Technol. Weld. Joining 11, 471 (2006).

    Article  Google Scholar 

  12. K. Nishimoto, K. Saida, and H. Okauchi Sci. Technol. Weld. Joining 11, 462 (2006).

    Article  Google Scholar 

  13. E. F. Nippes, W. F. Savage, and B. J. Bystram Weld. J. 23, 183s (1955).

    Google Scholar 

  14. N. E. Nissley and J. C. Lippold Weld. J. 87, 257s (2008).

    Google Scholar 

  15. A. Chabenat, D. Pierron, A. Thomas, F. Faure, and C. Guyon, Appl. No. 10/639,680. United States Patent Pub. No. US 2004/0115086 A1, June 17 (2004).

  16. S. D. Kiser, R. Zhang, and B. A. Baker, Proc. 8th Int. Conf. of Trends in Welding Research, p. 639, Pine-Mountain, GA, USA (2009).

    Google Scholar 

  17. A. J. Ramirez, J. W. Sowards, and J. C. Lippold J. of Mat. Proces. Tech. 179, 212 (2006).

    Article  Google Scholar 

  18. A. J. Ramirez and J. C. Lippold Mater. Sci. Eng. A 25, 245 (2004).

    Article  Google Scholar 

  19. N. E. Nissley and J. C. Lippold Weld. J. 88, 131s (2009).

    Google Scholar 

  20. E. A. Torres, R. Caram, and A. J. Ramirez Mater. Sci. Forum 638–642, 2858 (2010).

    Article  Google Scholar 

  21. J. Unfried S. and A. J. Ramirez, Mater. Sci. Forum 706–709, 945 (2012).

    Article  Google Scholar 

  22. J. Unfried S., E. A. Torres, and A. J. Ramirez, Hot Cracking Phenomena in Welds III, 1st ed., p.295. Springer-Verlag, Berlin (2011).

    Book  Google Scholar 

  23. N. Saunders, M. Fahrmann, and C. J. Small Proc. 9th Int. Symp. of Superalloys 2000, pp.803–811, Champion, PA, USA (2000).

    Book  Google Scholar 

  24. N. Saunders Proc. 8th Int. Symp. of Superalloys 1996 (eds. R.D.K. Kissinger et al.), p.115, PA, USA (1996).

  25. A. Engström, L. Höglund, and J. Ågren Metall. Mat. Trans. A 25, 1127 (1994).

    Article  Google Scholar 

  26. L. Kaufman and H. Nesor Metall. Mat. Trans. A 5, 1617 (1974).

    Article  Google Scholar 

  27. A. J. Ramirez and C. M. Garzón Hot Cracking Phenomena in Welds II, 1st ed., pp.427, Springer-Verlag, Berlin (2008).

    Book  Google Scholar 

  28. N. Saunders, X. Li, A.P. Miodownik, and J.-P.H. Schillé J. Mater. Sci. 39, 7237 (2004).

    Article  Google Scholar 

  29. Q. Y. Hou, Y. Z. He, Q. A. Zhang, and J. S. Gao, Mater. Des. 28, 1982 (2007).

    Article  Google Scholar 

  30. L. N. Zimina, N. N. Burova, and O. V. Makushok, Met. Sci. Heat Treat. 28, 130 (1986).

    Article  Google Scholar 

  31. J. M. Dahl, W. F. Danesi, and R. G. Dunn, Metall. Trans. 4, 1087 (1973).

    Article  Google Scholar 

  32. J. Unfried, S., E. B. Fonseca, C. M. R. Afonso, and A. J. Ramirez, Mathematical Modelling of Weld Phenomena 9, pp.983–996 TU-Graz, Austria (2010).

    Google Scholar 

  33. T. Kraft and H. E. Exner Mater. Sci. Technol. 14, 377 (1998).

    Article  Google Scholar 

  34. M. Raghavan, R. Mueller, G. A. Vaughn, and S. Floreen Metall. Mat. Trans. A. 15, 783 (1984).

    Article  Google Scholar 

  35. M. J. Perricone and J. N. DuPont, Metall. Trans. A 37, 1267 (2006).

    Article  Google Scholar 

  36. PCC Energy Group, Technical Bulletin of Inconel Alloy 690, http://pccenergygroup.com/assets/global_docs/Inconel_alloy_690.pdf (2009).

    Google Scholar 

  37. C. Radrakrisnha and K. Prasad-Rao, J. Mater. Sci. 32, 1977 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jimy Unfried-Silgado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unfried-Silgado, J., Ramirez, A.J. Modeling and characterization of as-welded microstructure of solid solution strengthened Ni-Cr-Fe alloys resistant to ductility-dip cracking part I: Numerical modeling. Met. Mater. Int. 20, 297–305 (2014). https://doi.org/10.1007/s12540-014-1023-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-014-1023-z

Key words

Navigation