Skip to main content
Log in

Analysis of the origin of periodic oscillatory flow in the continuous casting mold

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

It is very important to understand flow patterns within the continuous casting mold because they have a significant impact on product quality. Water model experiment and particle image velocimetry were conducted to identify the fluid flow pattern in the steel slab continuous casting mold. The fluid flow pattern in the mold is not steady but instead an oscillatory flow with a specific oscillation frequencies. Many studies have been reported about oscillatory flow within the mold. However, these studies do not provide a clear explanation of physical origin of oscillatory flow. We identified the physical origins of various specific oscillation frequencies, and confirmed through experimentation and simulation that each frequency is related to the cross flow and injection stream oscillation. Moreover, the degree of oscillation at each frequency appears differently depending on the location within the mold, and is shown to have a effect near the mold wall. These results provide a better understanding of complex oscillatory flow patterns within the mold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.-Y. Ko, J. Choi, J.-Y. Park, and I. Sohn, Met. Mater. Int. 20, 141 (2014).

    Article  Google Scholar 

  2. J.-Y. Park, E.-Y. Ko, J. Choi, and I. Sohn, Met. Mater. Int. 20, 1103 (2014).

    Article  Google Scholar 

  3. Y.-S. Kim, H.-W. Kwon, J.-W. Park, and D.-J. Kim, Korean J. Met. Mater. 51, 291 (2013).

    Google Scholar 

  4. B. Li and F. Tsukihashi, ISIJ Int. 45, 30 (2005).

    Article  Google Scholar 

  5. N. A. Molloy and P. L. Taylor, Nature, 224, 1192 (1969).

    Article  Google Scholar 

  6. D. Gupta, S. Chakraborty, and A. K. Lahiri, ISIJ Int. 37, 654 (1997).

    Article  Google Scholar 

  7. D. Gupta and A. K. Lahiri, Metall. Mater. Trans. B 27B, 757 (1996).

    Article  Google Scholar 

  8. T. Honeyands and J. Herbertson, Steel Res. 66, 287 (1995).

    Google Scholar 

  9. N. J. Lawson and M. R. Davidson, J. Fluids Eng. 124, 535 (2002).

    Article  Google Scholar 

  10. Q. Yuan. B. G. Thomas, and S. P. Vanka, Metall. Mater. Trans. B 35B, 685 (2004).

    Article  Google Scholar 

  11. A. Rasmos-Banderas, R. Sánchez-Pérez, R. D. Morales, J. Palzfox-Ramos, L. Demedices-Darcía, and M. Díaz-Cruz, Metall. Mater. Trans. B 35B, 449 (2004).

    Article  Google Scholar 

  12. B. Guo, T. A. G. Langrish, and D. F. Fletcher, ASME J. Fluids Eng. 123, 574 (2001).

    Article  Google Scholar 

  13. D. E. Hershey, B. G. Thomas, and F. M. Najjar, Int. J. Numer. Meth. Fluids 17, 23 (1993).

    Article  Google Scholar 

  14. F. M. Najjar, B. G. Thomas, and D. E. Hershey, Metall. Mater. Trans. B 26B, 749 (1995).

    Article  Google Scholar 

  15. B. M. Gebert, M. R. Davidson, and M. J. Rudman, Appl. Math. Model. 22, 843 (1998).

    Article  Google Scholar 

  16. N. J. Lawson and M. R. Davidson, J. Fluids Struct. 15, 59 (2001).

    Article  Google Scholar 

  17. X. Zhang and H. Shen, J. Hydrodynamics 18, 431 (2006).

    Article  Google Scholar 

  18. L. Zhang, S. Yang, K. Cai, J. Li, X. Wan, and B. G. Thomas, Metall. Mater. Trans. B 38B, 63 (2007).

    Article  Google Scholar 

  19. T.-H. Shih, W. W. Liou, A. Shabbir, Z. Tang, and J. Zhu, Computers Fluids 24(3), 227 (1995).

    Article  Google Scholar 

  20. L. Zhang and B. G. Thomas, Proc. XXIV Steelmaking National Symposium, p.184, eds., Morelia, Mich, Mexico (2003).

    Google Scholar 

  21. T. Nishi, H. Shibata, H. Ohta, and Y. Waseda, Metall. Mater. Trans. A 34A, 2801 (2003).

    Article  Google Scholar 

  22. S. Qiu, H. Liu. S. Pheng, and Y. Gan, ISIJ Int. 44, 1376 (2004).

    Article  Google Scholar 

  23. X. Tian, F. Zou, B. Li, and J. He, Metall. Mater. Trans. B 41B, 112 (2010).

    Article  Google Scholar 

  24. I. N. Kitiashvili, V. I. Abramenko, P. R. Goode, A. G. Kosovichev, S. K. Lele, N. N. Mansour, A. A. Wary, and V. B. Yurchyshyn, Phys. Scr. T155, 014025 (2013).

    Article  Google Scholar 

  25. M. Hanao, M. Kawamoto and A. Yamanaka, ISIJ Int. 49, 365 (2009).

    Article  Google Scholar 

  26. M. Hanao, M. Kawamoto and A. Yamanaka, ISIJ Int. 52, 1310 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-woo Yi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Jy., Kim, Yt. & Yi, Kw. Analysis of the origin of periodic oscillatory flow in the continuous casting mold. Met. Mater. Int. 21, 295–302 (2015). https://doi.org/10.1007/s12540-015-4223-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-4223-2

Keywords

Navigation