Skip to main content
Log in

Development of a numerical model to predict areas of plume eye of ladle furnace process

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The effects of operating parameters on the behavior of plume eye area were investigated with a numerical simulation model and water model experiments for ladle furnace process. The concept of total energy equivalence at the interface of slag and melt was adopted in the model for predicting the position of the slag/melt boundary of plume eye. The predicted results of plume eye area were well matched with water model experiments of wide range of gas flow (0.5 l/min~10 l/min) and other researchers’ results with various design of ladle of water model experiments and field operations. Numerical simulation and water model experiments also showed that fluid flow in the ladle was changed by increasing gas flow rates and the shape of flow patterns was strongly affected by the size of plume eye. By parametric study using simulation results and water model experiments, it was found that plume eye area is proportional to the square root of gas flow rate and is inversely proportional to the square root of initial slag height when the other parameters were keep constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.-Y. Ko, J. Choi, J.-Y. Park, and I. Sohn, Met. Mater. Int. 20, 141 (2014).

    Article  Google Scholar 

  2. A. S. Foundation, The Making, Shaping, and Treating of Steel: Ironmaking volume, p.140, Aise Steel Foundation (1999).

    Google Scholar 

  3. J.-Y. Park, E.-Y. Ko, J. Choi, and I. Sohn, Met. Mater. Int. 20, 1103 (2014).

    Article  Google Scholar 

  4. J. H. Kim, S. H. Hong, S. W. Joo, J. W. Shin, D. H. Kim, H. S. Choi, C. S. Ha, and B. D. You, Korean J. Met. Mater. 52, 909 (2014).

    Google Scholar 

  5. L. Zhang and B. G. Thomas, ISIJ int. 43, 271 (2003).

    Article  Google Scholar 

  6. K. Yonezawa and K. Schwerdtfeger, Metall. Trans. B 30, 411 (1999).

    Article  Google Scholar 

  7. G. Subagyo, ISIJ Int. 43, 262 (2003).

    Article  Google Scholar 

  8. D. Mazumdar and J. Evans, Metall. Trans. B 35, 400 (2004).

    Article  Google Scholar 

  9. K. Krishnapisharody and G. A. Irons, Metall. Trans. B 37, 763 (2006).

    Article  Google Scholar 

  10. K. Krishnapisharody and G. Irons, Metall. Trans. B 38, 367 (2007).

    Article  Google Scholar 

  11. N. Maruoka, F. Lazuardi, T. Maeyama, S.-J. Kim, A. N. Conejo, H. Shibata, and S.-Y. Kitamura, ISIJ Int. 51, 236 (2011).

    Article  Google Scholar 

  12. H. J. Whan, H. S. Hwan, K. D. Heun, Y. B. Don, P. J. Jin, and S. H. Suk, ISIJ Int. 41, 1165 (2001).

    Article  Google Scholar 

  13. B. Li, H. Yin, C. Q. Zhou, and F. Tsukihashi, ISIJ Int. 48, 1704 (2008).

    Article  Google Scholar 

  14. Y.-H. Liu, Z. He, and L.-P. Pan, Adv. Mech. Eng. 2014 (2014).

    Google Scholar 

  15. D. Mazumdar and R. I. Guthrie, ISIJ Int. 35, 1 (1995).

    Article  Google Scholar 

  16. D. Mazumdar and R. I. Guthrie, Metall. Trans. B 17, 725 (1986).

    Article  Google Scholar 

  17. K. Yonezawa and K. Schwerdtfeger, Metall. Trans. B 31, 461 (2000).

    Article  Google Scholar 

  18. B. Launder and D. Spalding, Mathematical Models of Turbulence, p.90, Academic Press, New York (1980).

    Google Scholar 

  19. S. V. Patankar, Numerical Heat Transfer and Fluid Flow, p.113, Taylor & Francis (1980).

    Google Scholar 

  20. G. B. Wallis, One-dimensional Two-phase Flow, p.89, McGraw- Hill New York (1969).

    Google Scholar 

  21. M. Iguchi, H. Kawabata, K. Nakajima, and Z.-I. Morita, Metall. Trans. B 26, 67 (1995).

    Article  Google Scholar 

  22. V. G. Levich and D. B. Spalding, Physicochemical Hydrodynamics, p.451, Prentice-Hall Englewood Cliffs, NJ (1962).

    Google Scholar 

  23. M. A. Castello-Branco and K. Schwerdtfeger, Metall. Trans. B 25, 359 (1994).

    Article  Google Scholar 

  24. S. Joo and R. Guthrie, Metall. Trans. B 23, 765 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-woo Yi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Hj., Yi, Kw. Development of a numerical model to predict areas of plume eye of ladle furnace process. Met. Mater. Int. 21, 511–520 (2015). https://doi.org/10.1007/s12540-015-4291-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-4291-3

Keywords

Navigation