Skip to main content
Log in

Numerical analysis on fluid flow and heat transfer in the smelting furnace of mitsubishi process for Cu refining

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

To understand complex behavior in the smelting furnace of Mitsubishi continuous process for copper refining, comprehensive 3-D numerical simulation and field experiment were performed. The numerical simulation results showed that strong and complex velocity fields of gas, matte and slag were generated in the furnace and large amounts of matte and slag were splashed into the gas area. Temperature measurements at the lance during field operation revealed that wide range of temperature variation appeared depending on the injection condition of concentrates. Numerical simulation results provided good agreements with experiments results and showed that the chemical reaction induces temperature increase during gas injection period. On the other hand, lance temperature is decreasing because of cold concentrates during gas and particles injection period. From the FFT analysis results, the fluctuations of matte and slag volume fraction near the lance induce temperature fluctuations of the lance. Through these experimental and simulation results, it was revealed that the lances in the smelting furnace were exposed to severe conditions such as high temperature, repeated large temperature change and cyclic change of large temperature gradient across the thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Shibasaki and M. Hayashi, JOM 43, 20 (1991).

    Article  Google Scholar 

  2. R. Sridhar, J. M. Tofuri, and S. Simeonov, JOM 49, 48 (1997).

    Article  Google Scholar 

  3. M. Goto, E. Oshima, and M. Hayashi, JOM 50, 60 (1998).

    Article  Google Scholar 

  4. Z. Asaki, T. Taniguchi, and M. Hayashi, JOM 53, 25 (2001).

    Article  Google Scholar 

  5. W. G. Davenport MK, M. King, M. Schlesinger, A. K. Biswas, Extractive Metall. of Copper, 4 th ed., pp.57–72, Elsevier Science Ltd. (2002).

    Book  Google Scholar 

  6. E. Kimura, ISIJ Int. 23, 522 (1983).

    Article  Google Scholar 

  7. S.-S. Park, N. Dyussekenov, and H.-Y. Sohn, Metall. Mater. Trans. B 41B, 51 (2010).

    Article  Google Scholar 

  8. J.-S. Chang and H.-Y. Sohn, Metall. Mater. Trans. B 43B, 787 (2012).

    Article  Google Scholar 

  9. Y.-B. Hahn and H.-Y. Sohn, Metall. Mater. Trans. B 21B, 945 (1990).

    Article  Google Scholar 

  10. M. Nagamori, W. J. Errington, P. J. Mackey, and D. Poggi, Metall. Mater. Trans. B 25B, 839 (1994).

    Article  Google Scholar 

  11. J. Vaarno, J. Jarvi, T. Ahokainen, T. Laurila, and P. Taskinen, Proc. Third International Conference on CFD in the Minerals and Process Industries, p.147, CSIRO, Melbourne, Australia (2003).

    Google Scholar 

  12. X.-F. Li and T. Xiao, Proc. Third International Conference on CFD in the Minerals and Process Industries, p.147, CSIRO, Melbourne, Australia (2003).

    Google Scholar 

  13. Ansys Fluent Theory Guide 14.0, pp.54-58, ANSYS Inc. (2011).

  14. H.-J. Lee and K.-W. Yi, Met. Mater. Int. 21, 511 (2015).

    Article  Google Scholar 

  15. M. Alam, J. Naser, G. Brooks, and A. Fontana, ISIJ Int. 52, 1026 (2012).

    Article  Google Scholar 

  16. D. Kang and R. K. Strand, Energ. Buildings, 62, 196 (2013).

    Article  Google Scholar 

  17. B. R. Conard, R. Sridhar, and J. S. Warner, K. J. Chem. Thermodynamics 12, 817 (1980).

    Article  Google Scholar 

  18. FACTSAGE 6.4 Thermochemistry Software, Thermfact/ CRCT and GTT-Tech. (accessed December 6, 2014).

  19. Steel Casting Handbook, Supplement 9, High Alloy Data Sheets, Heat Series, p.5, Steel Founders' Society of America (2004).

  20. K.-I. Horai and G. Simmons, Earth Planet. Sc. Lett. 6, 59 (1969).

    Article  Google Scholar 

  21. J.-Y. Lee, Y.-T. Kim, and K.-W. Yi, Met. Mater. Int. 21, 295 (2015).

    Article  Google Scholar 

  22. M. Wakamatsu, H. Nei, and K. Hashiguchi, J. Nucl. Sci. Technol. 32, 752 (1995).

    Article  Google Scholar 

  23. L.-W. Hu and M. S. Kazimi, Int. J. Heat Fluid Fl. 27, 54 (2006).

    Article  Google Scholar 

  24. G.-Y. Kim, K.-S. Kim, J.-C. Park, S.-K. Kim, Y.-O. Yoon, and K.-A. Lee, Korean J. Met. Mater. 52, 283 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-woo Yi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, Jh., Park, Ss., Han, Xf. et al. Numerical analysis on fluid flow and heat transfer in the smelting furnace of mitsubishi process for Cu refining. Met. Mater. Int. 22, 118–128 (2016). https://doi.org/10.1007/s12540-015-5092-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-5092-4

Keywords

Navigation