Skip to main content
Log in

Fabrication of protective-coated SiC reinforced tungsten matrix composites with reduced reaction phases by spark plasma sintering

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

SiC reinforced tungsten matrix composites were fabricated via the spark plasma sintering process. In order to prevent an interfacial reaction between the SiC and tungsten during sintering, TiOx coated SiC particles were synthesized by a solution-based process. TiOx layer coated SiC particles were treated in high temperature nitriding conditions or annealed in a high temperature vacuum to form TiN or TiC coated SiC particles, respectively. The TiC layers coated on SiC particles successfully prevented tungsten from reacting with SiC; hence the proposed process resulted in successful fabrication of the SiC/W composites. The mechanical properties such as compressive strength and flexural strength of the composites were measured. Additionally, the effect of SiC on the high temperature oxidative ablation of tungsten was also investigated. The addition of SiC resulted in an improved oxidative ablation resistance of the tungsten-based composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Hamacher and A. M. Bradshaw, 18th World Energy Congress, p.1, Buenos Aires (2001).

    Google Scholar 

  2. B. I. Khripunov, V. S. Koidan, A. I. Ryazanov, V. M. Gureev, S. N. Kornienko, S. T. Latushkin, A. S. Rupyshev, E. V. Semenov, V. S. Kulikauskas, and V. V. Zatekin, Phys. Procedia 71, 63 (2015).

    Article  Google Scholar 

  3. ASM International, ASM International Engineering Materials Handbook, ASM International, Materials Park, OH (1991).

    Google Scholar 

  4. S. W. H. Yih and C. T. Wang, Tungsten-Sources, Metallurgy, Properties and Applications, pp. 266–271, Plenum Press, New York (1979).

    Google Scholar 

  5. E. Lassner and W. D. Schubert, Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds, pp. 1–59, Plenum Publishers, New York (1999).

    Book  Google Scholar 

  6. M. A. Yar, S. Wahlberg, H. Bergqvist, H. G. Salem, M. Johnsson, and M. Muhammed, J. Nucl. Mater. 408, 129 (2011).

    Article  Google Scholar 

  7. M. Rieth, J. L. Boutard, S. L. Dudarev, T. Ahlgren, S. Antusch, and N. Baluc et al., J. Nucl. Mater. 417, 463 (2011).

    Article  Google Scholar 

  8. M. A. Yar, S. Wahlberg, H. Bergqvist, H. G. Salem, M. Johnsson, and M. Muhammed, J. Nucl. Mater. 412, 227 (2011).

    Article  Google Scholar 

  9. Z. Zhou, J. Tan, D. Qu, G. Pintsuk, M. Rödig, and J. Linke, J. Nucl. Mater. 431, 202 (2012).

    Article  Google Scholar 

  10. M. Xia, Q. Yan, L. Xu, H. Guo, L. Zhu, and C. Ge, J. Nucl. Mater. 434, 85 (2013).

    Article  Google Scholar 

  11. S. Wang, L.-M. Luo, X.-Y. Tan, G.-N. Luo, X. Zan, J.-G. Cheng, X.-Y. Zhu, and Y.-C. Wu, J. Nucl. Mater. 454, 114 (2014).

    Article  Google Scholar 

  12. T. Palacios, A. Jiménez, A. Muñóz, M. A. Monge, C. Ballesteros, and J. Y. Pastor, J. Nucl. Mater. 454, 455 (2014).

    Article  Google Scholar 

  13. J. Zhang, L.-M. Luo, X.-Y. Zhu, H.-Y. Chen, J.-L. Chen, X. Zan, J.-G. Cheng, and Y.-C. Wu, J. Nucl. Mater. 456, 316 (2015).

    Article  Google Scholar 

  14. M. Zibrov, M. Mayer, L. Gao, S. Elgeti, H. Kurishita, Y. Gasparyan, and A. Pisarev, J. Nucl. Mater. 463, 1045 (2015).

    Article  Google Scholar 

  15. H.-Y. Chen, L.-M. Luo, J.-B. Chen, P. Li, G.-N. Luo, J.-G. Cheng, and Y.-C. Wu, J. Nucl. Mater. 462, 496 (2015).

    Article  Google Scholar 

  16. M. Xia, Q. Yan, L. Xu, L. Zhu, H. Guo, and C. Ge, J. Nucl. Mater. 430, 216 (2012).

    Article  Google Scholar 

  17. W. D. Kloop, J. Less Common Met. 42, 261 (1975).

    Article  Google Scholar 

  18. M. Rieth, S. L. Dudarev, S. M. Gonzalez de Vicente, J. Aktaa, T. Ahlgren, and S. Antusch et al., J. Nucl. Mater. 432, 482 (2013).

    Article  Google Scholar 

  19. H. Kurishita, S. Matsuo, H. Arakawa, T. Sakamoto, S. Kobayashi, K. Nakai, T. Takida, M. Kato, M. Kawai, and N. Yoshida, J. Nucl. Mater. 398, 87 (2010).

    Article  Google Scholar 

  20. D. Y. Park, Y. J. Oh, Y. S. Kwon, S. T. Lim, and S. J. Park, Int. J. Refract. Met. Hard 42, 205 (2014).

    Article  Google Scholar 

  21. E. Y. Ivanov, C. Suryanarayana, and B. D. Bryskin, Mat. Sci. Eng. A-Struct. 251, 255 (1998).

    Article  Google Scholar 

  22. Y. Song, Q. Li, J. Li, G. He, Y. Chen, and H. S. Kim, Met. Mater. Int. 20, 1145 (2014).

    Article  Google Scholar 

  23. M. Muzyk, D. Nguyen-Manh, J. Wróbel, K. J. Kurzydlowski, N. L. Baluc, and S. L. Dudarev, J. Nucl. Mater. 442, 680 (2013).

    Article  Google Scholar 

  24. A. Xu, C. Beck, D. E. J. Armstrong, K. Rajan, G. D.W. Smith, P. A. J. Bagot, and S. G. Roberts, Acta Mater. 87, 121 (2015).

    Article  Google Scholar 

  25. A. Luo, D. L. Jacobson, and K. S. Shin, Scr. Metall. 23, 397 (1989).

    Article  Google Scholar 

  26. Y. M. Kim, K. H. Lee, E.-P. Kim, D.-I. Cheong, and S. H. Hong, Int. J. Refract. Met. Hard 27, 842 (2009).

    Article  Google Scholar 

  27. G.-M. Song, Y. Zhou, and Y.-J. Wang, Mater. Charact. 50, 293 (2003).

    Article  Google Scholar 

  28. X. Liu, J. Chen, Y. Lian, J. Wu, Z. Xu, and N. Zhang et al., J. Nucl. Mater. 442, S309 (2013).

  29. E. Y. Ivanov and B. D. Bryskin, Met. Powder Rep. 53, 39 (1998).

    Article  Google Scholar 

  30. L. M. Huang, L. M. Luo, M. L. Zhao, G. N. Luo, X. Y. Zhu, and Y.-C. Wu et al., Mater. Design 81, 39 (2015).

    Article  Google Scholar 

  31. K. Tokunaga, H. Kurishita, H. Arakawa, S. Matsuo, T. Hotta, K. Araki, Y. Miyamoto, T. Fujiwara, K. Nakamura, T. Takida, M. Kato, and A. Ikegaya, J. Nucl. Mater. 442, 297 (2013).

    Article  Google Scholar 

  32. N. Jin, Y. Yang, X. Luo, J. Li, B. Huang, S. Liu, and Z. Xiao, Appl. Sur. Sci. 314, 896 (2014).

    Article  Google Scholar 

  33. M. Hashemi, S. Mirdamadi, and H. R. Rezaie, Electrochim. Acta 138, 224 (2014).

    Article  Google Scholar 

  34. D. Ding, Advances in Ceramic Matrix Composites, pp. 9–26, Woodhead Publishing Limited, Cambridge (2014).

    Book  Google Scholar 

  35. L. L. Snead, T. Nozawa, Y. Katoh, T.-S. Byun, S. Kondo, and D. A. Petti, J. Nucl. Mater. 371, 329 (2007).

    Article  Google Scholar 

  36. X. L. Shi, M. Wang, S. Zhang, and Q. Zhang, Int. J. Refract. Met. Hard 41, 60 (2013).

    Article  Google Scholar 

  37. M. I. Chaudry, W. B. Berry, and M. V. Zeller, Mater. Res. Soc. Symp. Proc. 62, 507 (1990).

    Google Scholar 

  38. S. Kumar, A. Kumar, K. Sampath, V. V. B. Prasad, J. C. Chaudhary, A. K. Gupta, and G. Rohini Devi, J. Eur. Ceram. Soc. 31, 2425 (2011).

    Article  Google Scholar 

  39. C. Thomas, T. Joseph, A. Peter, and M. James, Ceram. Eng. Sci. Proc. 03, 517 (2000).

    Google Scholar 

  40. H.-K. Kang, Scripta Mater. 51, 1051 (2004).

    Article  Google Scholar 

  41. R.-J. Zhang, Y.-Q. Yang, W.-T. Shen, C. Wang, and X. Luo, J. Crys. Growth 313, 56 (2010).

    Article  Google Scholar 

  42. T. T. Cheng, I. P. Jones, R. A. Shatwell, and P. Doorbar, Mat. Sci. Eng. A-Struct. 260, 139 (1999).

    Article  Google Scholar 

  43. C. Guo, C. Zhang, L. He, B. Jin, and N. Shi, J. Mater. Sci. Technol. 23, 677 (2007).

    Article  Google Scholar 

  44. W. F. Seng and P. A. Barnes, Mat. Sci. Eng. B-Solid 72, 13 (2000).

    Article  Google Scholar 

  45. A. Yazdani and A. Zakeri, Powder Technol. 278, 196 (2015).

    Article  Google Scholar 

  46. S. Coskun, M. L. Öveçoglu, B. Özkal, and M. Tanoglu, J. Alloy. Compd. 492, 576 (2010).

    Article  Google Scholar 

  47. R. M. German, A. Bose, and S. S. Mani, Metall. Trans. A. 23, 211 (1992).

    Article  Google Scholar 

  48. P. López-Ruiz, F. Koch, N. Ordás, S. Lindig, and C. García-Rosales, Fusion Eng. Des. 86, 1719 (2011).

    Article  Google Scholar 

  49. M. Galatanu, B. Popescu, M. Enculescu, I. Tiseanu, T. Craciunescu, and A. Galatanu, Fusion Eng. Des. 88, 2598 (2013).

    Article  Google Scholar 

  50. S. J. Son, K. H. Park, Y. Katoh, and A. Kohyama, J. Nucl. Mater. 329-333, 1549 (2004).

    Article  Google Scholar 

  51. L. Baud, C. Jaussaud, R. Madar, C. Bernard, J. S. Chen, and M. A. Nicolet, Mat. Sci. Eng. B-Solid. 29, 126 (1995).

    Article  Google Scholar 

  52. A. Nino, Y. Nakaibayashi, S. Sugiyama, and H. Taimatsu, Mater. Trans. 52, 1641 (2011).

    Article  Google Scholar 

  53. Y. Lee, S. J Son, Y. Katoh, and A. Kohyama, J. Nucl. Mater. 329-333, 549 (2004).

    Article  Google Scholar 

  54. D. J. Lee, H. S. Park, H. J. Ryu, S. W. Jeon, and S. H. Hong, J. Alloy. Compd. 509, 9060 (2011).

    Article  Google Scholar 

  55. Kamiya, Kanichi, Yoko, Toshinobu, Bessho, and Masami, J. Mater. Sci. 22, 937 (1987).

    Google Scholar 

  56. W. W. Pultz and W. Hertl, Trans. Faraday Soc. 62, 2499 (1966).

    Article  Google Scholar 

  57. G. D. Zhang and R. Chen, Compos. Interfaces 1, 337 (1993).

    Google Scholar 

  58. S. F. Peng and Metallurgy of Tungsten, pp. 168–172, Metallurgy Industry Press, Beijing, China (1981).

    Google Scholar 

  59. G.-M. Song, Y. Zhou, and Y.-J. Wang, Mater. Charact. 50, 293 (2003).

    Article  Google Scholar 

  60. J. Y. Park, S. J. Yang, Y. G. Jin, C. R. Park, G. H. Kim, and H. N. Han, Met. Mater. Int. 20, 1037 (2014).

    Article  Google Scholar 

  61. S. Rimza, K. Satpathy, S. Khirwadkar, and K. Velusamy, Fusion Eng. Des. 100, 581 (2015).

    Article  Google Scholar 

  62. X. Zhang, Aerosp. Sci. Technol. 15, 402 (2011).

    Article  Google Scholar 

  63. M. A. Umer, D. J. Lee, H. J. Ryu, and S. H. Hong, Int. J. Refract. Met. Hard 42, 17 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ho Jin Ryu or Soon Hyung Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umer, M.A., Lee, D., Waseem, O.A. et al. Fabrication of protective-coated SiC reinforced tungsten matrix composites with reduced reaction phases by spark plasma sintering. Met. Mater. Int. 22, 493–500 (2016). https://doi.org/10.1007/s12540-016-5700-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-016-5700-y

Keywords

Navigation