Skip to main content
Log in

Microstructural Evolution of HSLA ISO 3183 X80M (API 5L X80) Friction Stir Welded Joints

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Evaluation was made of friction stir welded joints, identifying conditions that resulted in satisfactory welded joints free from defects and with microstructural characteristics that provided good mechanical properties. Microstructural characterization and cooling curve analysis of the joints with lower and higher heat inputs evidenced deformation below and above the non-recrystallization temperature (Tnr) and dynamic recrystallization during microstructural evolution. Microscopy analyses showed acicular ferrite, bainitic ferrite, and coalesced bainite microstructures in the stir zone of the cold weld (lower heat input), while the stir zone of the hot weld (higher heat input) contained bainitic ferrite, acicular ferrite, coalesced bainite, martensite, and dispersed carbides. Granular bainite and dispersed carbides were observed in all the heat affected zones. Analysis of the microstructural transformations, together with the thermal history of the joints, showed that the variable that had the greatest influence on the morphology of the bainite (granular bainite/bainitic ferrite) was the deformation temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.P. Wang, Z.-G. Yang, B.Z. Bai, H.S. Fang, Mater. Sci. Eng. A 369, 112–118 (2004)

    Article  Google Scholar 

  2. M. Pontremoli, P. Bufalini, A. Aprile, C. Jannone, Met. Technol. 11, 504–514 (1984)

    Article  Google Scholar 

  3. American Petroleum Institute, Welding of Pipelines and Related Facilities, API Standard 1104, 20th edn. (American Petroleum Institute, Washington, DC, 2005)

    Google Scholar 

  4. M. Witek, J. Nat. Gas Sci. Eng. 27, 374–384 (2015)

    Article  Google Scholar 

  5. S. Moeinifar, A.H. Kokabi, H.M. Hosseini, J. Mater. Process. Technol. 211(3), 368–375 (2011)

    Article  Google Scholar 

  6. A.R. Midawi, E.B.F. Santos, N. Huda, A.K. Sinha, R. Lazor, A.P. Gerlich, J. Mater. Process. Technol. 226, 272–279 (2015)

    Article  Google Scholar 

  7. R.S. Mishra, M.W. Mahoney, Friction stir welding and processing, in Chapter 13: Application of Friction Stir Welding and Related Technologies, ed. by W.J. Arbergast (Materials Park, ASM International, 2007), pp. 293–295

  8. H. Fujii, R. Ueji, N. Tsuji, Mater. Sci. Eng. A 429, 50–57 (2010)

    Article  Google Scholar 

  9. J. Defalco, Weld. J. 85, 42–44 (2006)

    Google Scholar 

  10. R.S. Mishra, Z.A. Ma, Mater. Sci. Eng. R 50, 1–78 (2008)

    Article  Google Scholar 

  11. W.M. Thomas, E.D. Nicholas, Mater. Des. 18, 269–273 (1997)

    Article  Google Scholar 

  12. N.V. Bangaru, D.P. Fairchild, M.L. Macia, J.U. Koo, A. Ozekcin, in Proceedings of 4th International Pipeline Technology Conference, Ostend (2004), pp. 789–808

  13. A. Ozekcin, H.W. Jin, J.Y. Koo, N.V. Bangaru, R. Ayer, G. Vaughn, R. Steel, S.A. Packer, Int. J. Offshore Polar Eng. 14, 105–109 (2004)

    Google Scholar 

  14. H. Aydin, T.W. Nelson, Mater. Sci. Eng. A 586, 313–322 (2013)

    Article  Google Scholar 

  15. A.M. Tribe, Thesis (Brigham Young University, Provo, 2012)

    Google Scholar 

  16. H. Aydin, Mater. Technol. 48, 15–22 (2014)

    Google Scholar 

  17. P.J. Konkol, M.F. Mruczek, Weld. J. 86, l87s–l95s (2007)

    Google Scholar 

  18. P.J. Konkol, C.D. Sorensen, T.W. Nelson, S.M. Packer, 4th International Symposium on FSW (EUA, Park City, 2003)

    Google Scholar 

  19. H. Farhat, I.N.A. Oguocha, S. Yannacopoulos, Materials Science & Technology Conference and Exhibition, Pittsburg (2009), pp. 2457–2468

  20. T.F.A. Santos, T.F.C. Hermenegildo, R.R. Marinho, M.T.P. Paes, A.J. Ramirez, Eng. Fract. Mech. 77, 2937–2945 (2010)

    Article  Google Scholar 

  21. J. Defalco, R. Steel, Weld. J. 88, 44–48 (2009)

    Google Scholar 

  22. G. Krauss, Metall. Mater. Trans. B 34, 781–792 (2003)

    Article  Google Scholar 

  23. T.F.C. Hermenegildo, A.C.S. Silva, E.A. Torres, T.F.A. Santos, A.J. Ramirez, Sold. Insp. 22(2), 129–138 (2017)

    Article  Google Scholar 

  24. L.Y. Wei, T.W. Nelson, Weld. J. 90, 95–101 (2011)

    Google Scholar 

  25. T.F.A. Santos, E.A. Torres, E.B. Fonseca, A.J. Ramirez, Mater. Res. 19, 117–131 (2016)

    Article  Google Scholar 

  26. R.M. Alé, J.M.A. Rebello, J. Charlier, Mater. Charact. 37, 89–93 (1996)

    Article  Google Scholar 

  27. American Society for Testing and Materials. Standard Test Method for Crack-Tip Opening Displacement (CTOD) Fracture Toughness Measurement, ASTM E1290, (1997)

  28. M.D. Husain, R. Sarkar, T. Pal, N. Prabhu, M. Ghosh, J. Mater. Eng. Perform. 24, 3673–3683 (2015)

    Article  Google Scholar 

  29. H.K.D.H. Bhadeshia, Bainite in Steels-Transformation. Microstructure and Properties (Institute of Materials, London, 2001)

    Google Scholar 

  30. F.G. Caballero, C. Capdevila, J. Chao, J. Cornide, C. Garcia-Mateo, H. Roelofs, G. Mastrogiacomo, in 2nd International Conference Super High Strength Steels, Peschiera (2010), pp. 17–20

  31. X. Wang, F.R. Xiao, Y.H. Fu, X.W. Chen, B. Liao, Mater. Sci. Eng. A 530, 539–547 (2011)

    Article  Google Scholar 

  32. N. Huda, A.R. Midawi, J. Gianetto, R. Lazor, A.P. Gerlich, Mater. Sci. Eng. A 662, 481–491 (2016)

    Article  Google Scholar 

  33. J.P. Wang, Z.G. Yang, B.Z. Bai, H.S. Fang, Mater. Sci. Eng. A 369, 112–118 (2004)

    Article  Google Scholar 

  34. S. Shanmugam, R.D.K. Misra, J. Hartamann, S.G. Jansto, Mater. Sci. Eng. A 441, 215–229 (2006)

    Article  Google Scholar 

  35. J.S. Benjamin, Mechanical alloying. Sci. Am. 234, 40–48 (1976)

    Article  Google Scholar 

  36. J.W. Sowards, Mater. Des. 88, 632–642 (2015)

    Article  Google Scholar 

  37. T.J. Lienert, W.L. Stellwag, B.B. Grimmett, R.W. Warke, Weld. Res. Suppl. Weld. J. 82, 1–9 (2003)

    Google Scholar 

  38. Z. Yanlei, J. Tao, Z. Xiangjun, L. Zhenyu, R.D.K. Misra, Mater. Sci. Eng. A 626, 352–361 (2015)

    Article  Google Scholar 

  39. J.H. Park, H.K.D.H. Bhadeshia, L. Karlsson, E. Keehan, Sci. Technol. Weld. Join. 13, 593–597 (2008)

    Article  Google Scholar 

  40. H.K. Sung, S.Y. Shin, W. Cha, K. Oh, S. Lee, N.J. Kim, Mater. Sci. Eng. A 528, 3350–3357 (2011)

    Article  Google Scholar 

  41. T.F.A. Santos, E.A. Torres, J.M.C. Vilela, M.S. Andrade, A.B. Cota, Rev. Latin Am. Metal. Mat. 35, 118–133 (2015)

    Google Scholar 

  42. H.-H. Cho, S.H. Kang, Mater. Des. 34, 258–267 (2012)

    Article  Google Scholar 

  43. J.R. Yang, C.Y. Huan, C.S. Chiou, ISIJ Int. 35, 1013–1019 (1995)

    Article  Google Scholar 

  44. C.S. Chiou, J.R. Yang, C.Y. Huanga, Mater. Chem. Phys. 69, 113–124 (2001)

    Article  Google Scholar 

  45. K.L. Fujiwara, ISIJ Int. 35, 1006–1012 (1995)

    Article  Google Scholar 

  46. C. Ouchi, Trans. ISIJ 22, 214–222 (1982)

    Article  Google Scholar 

  47. F. Boratto, R. Barbosa, S. Yue, J.J. Jonas, Thermec (Tokyo, The Iron and Steel Institute of Japan, 1988), pp. 383–390

    Google Scholar 

  48. R.W.K. Honeycombe, H.K.D.H. Bhadeshia, Steels: Microstructure and Properties, 2nd edn. (Edward Arnold Ltd., London, 1995)

    Google Scholar 

  49. S. Yamamoto, ISIJ Int. 35, 1020–1026 (1995)

    Article  Google Scholar 

  50. A.B. Cota, Ph. D. Thesis, Universidade Federal de Minas Gerais, Belo Horizonte (1998) (in portuguese)

  51. M. Katsumata, O. Ishiyama, T. Inoue, Mater. Trans. 32, 715–728 (1991)

    Article  Google Scholar 

  52. J.R. Yang, International Symposium on Low-Carbon Steels (TMS, Pittsburgh, 1993), pp. 293–301

    Google Scholar 

  53. J.B. Huanga, Z. Xub, Mater. Sci. Eng. A 438–440, 254–257 (2006)

    Article  Google Scholar 

  54. S. Kajiwara, Metall. Trans. A 17, 1693–1702 (1986)

    Article  Google Scholar 

  55. G. Krauss, Mater. Sci. Eng., A 273–275, 40–59 (1999)

    Article  Google Scholar 

  56. Z. Xu, J. Huang, Mater. Sci. Eng. A 438–440, 258–261 (1996)

    Google Scholar 

  57. J. Huang, Z. Xu, Acta Metall. Sinica (Engl. Lett.) 19, 133–138 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Petrobras, FINEP, TenarisConfab, CNPEM/LNNano, and FEM/UNICAMP for their technical and/or financial support. TFCH and TFAS also thank FACEPE, CNPq, and UFPE.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tahiana F. C. Hermenegildo or Tiago F. A. Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hermenegildo, T.F.C., Santos, T.F.A., Torres, E.A. et al. Microstructural Evolution of HSLA ISO 3183 X80M (API 5L X80) Friction Stir Welded Joints. Met. Mater. Int. 24, 1120–1132 (2018). https://doi.org/10.1007/s12540-018-0111-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-0111-x

Keywords

Navigation