Skip to main content
Log in

Effect of Aging on the Structure and Transformation Behavior of Cu–12Al–3.5Ni–0.7Ti–0.05RE High Temperature Shape Memory Alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this study, the effect of isothermal aging on the thermoelastic martensitic transformation and microstructure of the as-quenched Cu–12Al–3.5Ni–0.7Ti–0.05RE (RE = Ce, La) high temperature shape memory alloy was studied. The results showed that the alloy microstructure and martensitic transformation are strongly influenced by the aging temperature rather than aging time. During aging at 350 °C the alloy was prone to both the precipitation of the γ2 phase and the bainitic transformation, resulting in a loss of martensitic transformation and damping capacity. The prolonged aging at 350 °C caused a decomposition of parent phase into the equilibrium γ2 phase alongside the α phase which produced a significant hardness increment. On the other hand, aging at 250 °C affected the microstructure only slightly producing insignificant shift in the transformation temperatures. It was found that, the secondary phases including Ti-rich X-phase and the RE-rich phase were not influenced by the aging process. The results prescribe a high temperature order of the stability of martensitic transformation for this new alloy which is important for its high temperature shape memory applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. V. Recarte, R.B. Pérez-Sáez, E.H. Bocanegra, M.L. Nó, J. San Juan, Influence of Al and Ni concentration on the martensitic transformation in Cu–Al–Ni shape-memory alloys. Metall. Mater. Trans. A 33, 2581–2591 (2002). https://doi.org/10.1007/s11661-002-0379-8

    Article  Google Scholar 

  2. S.N. Saud, E. Hamzah, T. Abubakar, H.R. Bakhsheshi-Rad, Influence of silver nanoparticles addition on the phase transformation, mechanical properties and corrosion behaviour of Cu–Al–Ni shape memory alloys. J. Alloys Compd. 612, 471–478 (2014). https://doi.org/10.1016/j.jallcom.2014.05.173

    Article  CAS  Google Scholar 

  3. U. Sari, Influences of 2.5 wt% Mn addition on the microstructure and mechanical properties of Cu–Al–Ni shape memory alloys. Int. J. Miner. Metall. Mater. 17(2), 192–198 (2010). https://doi.org/10.1007/s12613-010-0212-0

    Article  CAS  Google Scholar 

  4. V. Recarte, R.B. Pérez-Sáez, E.H. Bocanegra, M.L. Nó, J. San Juan, Dependence of the martensitic transformation characteristics on concentration in Cu–Al–Ni shape memory alloys. Mater. Sci. Eng. A 273–275, 380–384 (1999). https://doi.org/10.1016/S0921-5093(99)00302-0

    Article  Google Scholar 

  5. D. Fang, W. Lu, KCh. Hwang, Pseudoelastic behavior of CuAINi single crystal under biaxial loading. Met. Mater. Int. 4, 702–706 (1998). https://doi.org/10.1007/BF03026383

    Article  CAS  Google Scholar 

  6. G.N. Sure, L.C. Brown, The fatigue properties of grain refined β–Cu–Al–Ni strain–memory alloys. Scr. Metall. 19, 401–404 (1985). https://doi.org/10.1016/0036-9748(85)90102-4

    Article  CAS  Google Scholar 

  7. Z. Xiao, Z. Li, M. Fang, Sh Xiong, X. Sheng, M. Zhou, Effect of processing of mechanical alloying and powder metallurgy on microstructure and properties of Cu–Al–Ni–Mn alloy. Mater. Sci. Eng. A 488, 266–272 (2008). https://doi.org/10.1016/j.msea.2007.11.037

    Article  CAS  Google Scholar 

  8. W.Y. Ci, T.A. Abubakar, E. Hamzah, S.N. Saud, Study of X-phase formation on Cu–Al–Ni shape memory alloys with Ti addition. J. Mech. Eng. Sci. 11, 2770–2779 (2017). https://doi.org/10.15282/jmes.11.2.2017.17.0251

    Article  CAS  Google Scholar 

  9. S.N. Saud, E. Hamzah, T. Abubakar, M. Zamri, M. Tanemura, Influence of Ti additions on the martensitic phase transformation and mechanical properties of Cu–Al–Ni shape memory alloys. J. Therm. Anal. Calorim. 118, 111–122 (2014). https://doi.org/10.1007/s10973-014-3953-6

    Article  CAS  Google Scholar 

  10. S. Bhattacharya, A. Bhuniya, M.K. Banerjee, Influence of minor additions on characteristics of Cu–AI–Ni alloy. J. Mater. Sci. Technol. 9, 654–658 (1993). https://doi.org/10.1179/mst.1993.9.8.654

    Article  CAS  Google Scholar 

  11. J.S. Lee, C.M. Wayman, Grain refinement of a Cu–Al–Ni shape memory alloy by Ti and Zr additions. Trans. Jpn. Inst. Met. 27(8), 584–591 (1986). https://doi.org/10.2320/matertrans1960.27.584

    Article  CAS  Google Scholar 

  12. Sh Yang, F. Zhang, J. Wu, Y. Lu, Z. Shi, C. Wang, X. Liu, Superelasticity and shape memory effect in Cu–Al–Mn–V shape memory alloys. Mater. Des. 115, 17–25 (2017). https://doi.org/10.1016/j.matdes.2016.11.035

    Article  CAS  Google Scholar 

  13. X. Zhang, Q. Liu, Cu–Al–Ni–V high-temperature shape memory alloys. Intermetallics 92, 108–112 (2018). https://doi.org/10.1016/j.intermet.2017.10.001

    Article  CAS  Google Scholar 

  14. M.A. Morris, Influence of boron additions on ductility and microstructure of shape memory Cu–Al–Ni alloys. Scr. Metall. Mater. 25, 2541–2546 (1991). https://doi.org/10.1016/0956-716X(91)90065-9

    Article  CAS  Google Scholar 

  15. G.S. Yang, J.K. Lee, W.Y. Jang, Effect of grain refinement on phase transformation behavior and mechanical properties of Cu–based alloy. T. Nonferr. Met. Soc. 19, 979–983 (2009). https://doi.org/10.1016/S1003-6326(08)60390-8

    Article  CAS  Google Scholar 

  16. N.F. Kennon, D.P. Dunne, L. Middleton, Aging effects in copper-based shape memory alloys. Metall. Trans. A 13, 551–555 (1982). https://doi.org/10.1007/bf02644418

    Article  CAS  Google Scholar 

  17. C.W.H. Lam, C.Y. Chung, Study of anisothermai ageing of CANTiM shape memory alloys by positron annihilation. Met. Mater. Int. 2, 75–80 (1996). https://doi.org/10.1007/bf03025949

    Article  CAS  Google Scholar 

  18. K. Otsuka, C.M. Wayman, Shape Memory Materials (Cambridge University Press, Cambridge, 1999), pp. 97–116

    Google Scholar 

  19. K. Shimizu, Ageing and thermal cycling effects in shape memory alloys. J. Electron Microsc. 34(4), 277–288 (1985). https://doi.org/10.1093/oxfordjournals.jmicro.a050520

    Article  CAS  Google Scholar 

  20. U. Sari, T. Kirindi, F. Ozcan, M. Dikici, Effects of aging on the microstructure of a Cu–Al–Ni–Mn shape memory alloy. Int. J. Miner. Metall. Mater. 18(4), 430–436 (2011). https://doi.org/10.1007/s12613-011-0458-1

    Article  CAS  Google Scholar 

  21. N. El-Bagoury, M.M. Hessien, Z.I. Zaki, Influence of aging on microstructure, martensitic transformation and mechanical properties of NiTiRe shape memory alloy. Met. Mater. Int. 20, 997–1002 (2014). https://doi.org/10.1007/s12540-014-5003-0

    Article  CAS  Google Scholar 

  22. V. Recarte, R.B. Pérez-Sáez, M.L. Nó, J. San Juan, Ordering kinetics in Cu–Al–Ni shape memory alloys. J. Appl. Phys. 86, 5467–5473 (1999). https://doi.org/10.1063/1.371547

    Article  CAS  Google Scholar 

  23. V. Recarte, O.A. Lambri, R.B. Pérez-Sáez, M.L. Nó, J. San Juan, Ordering temperatures in Cu–Al–Ni shape memory alloys. Appl. Phys. Lett. 70, 3513–3515 (1997). https://doi.org/10.1063/1.119217

    Article  CAS  Google Scholar 

  24. J.I. Pérez-Landazábal, V. Recarte, V. Sánchez-Alarcos, M.L. Nó, J. San Juan, Study of the stability and decomposition process of the β phase in Cu–Al–Ni shape memory alloys. Mater. Sci. Eng. A 438–440, 734–737 (2006). https://doi.org/10.1016/j.msea.2005.12.066

    Article  CAS  Google Scholar 

  25. Y. Nakata, Y. Iizuka, T. Ono, The effects of aging on the degree of order in Cu–Al–Ni shape memory alloys. Mater. Trans. 57, 257–262 (2016). https://doi.org/10.2320/matertrans.MB201511

    Article  CAS  Google Scholar 

  26. H. Morawiec, M. Gigla, Effect of ageing on shape recovery in Cu–Al–Ni alloy with Ti + B addition. Acta Metall. Mater. 42, 2683–2686 (1994). https://doi.org/10.1016/0956-7151(94)90209-7

    Article  CAS  Google Scholar 

  27. W. Zou, J. Gui, R. Wang, C. Tang, M. Xiang, D. Zhang, Bainitic precipitation and its effect on the martensitic transformation in the Cu–Al–Ni–Mn–Ti shape-memory alloy. J. Mater. Sci. 32, 5279–5286 (1997). https://doi.org/10.1023/A:1018606609313

    Article  CAS  Google Scholar 

  28. U. Sari, İ. Aksoy, Electron microscopy study of 2H and 18R martensites in Cu-11.92 wt% Al-3.78 wt% Ni shape memory alloy. Alloys Compd. 417, 138–142 (2006). https://doi.org/10.1016/j.jallcom.2005.09.049

    Article  CAS  Google Scholar 

  29. M.K. Lee, S.M. Hong, G.H. Kim, K.H. Kim, W.W. Kim, Structural properties in flame quenched Cu-9Al-4.5Ni-4.5Fe alloy. Met. Mater. Int. 10, 313–319 (2004). https://doi.org/10.1007/BF03185979

    Article  CAS  Google Scholar 

  30. K. Adachi, K. Shoji, Y. Hamada, Formation of X phase and origin of grain refinement effect in Cu–Al–Ni shape memory alloys added with titanium. ISIJ Int. 29(5), 378–387 (1989). https://doi.org/10.2355/isijinternational.29.378

    Article  CAS  Google Scholar 

  31. I. Hurtado, J. Van Humbeek, P. Ratchev, L. Delaey, Effect of X phase precipitation on elastic modulus of Cu–Al–Ni–Ti–Mn shape memory alloys. Mater. Trans. JIM 37(7), 1371–1378 (1996). https://doi.org/10.2320/matertrans1989.37.1371

    Article  CAS  Google Scholar 

  32. H. Cheniti, M. Bouabdallah, E. Patoor, High temperature decomposition of the β1 phase in a Cu–Al–Ni shape memory alloy. Alloys Compd. 476, 420–424 (2009). https://doi.org/10.1016/j.jallcom.2008.09.003

    Article  CAS  Google Scholar 

  33. P. Rodriguez, G. Guenin, Thermal aging behaviour and origin of a Cu-Al-Ni shape memory alloy. Mater. Sci. Eng. A 129, 273–277 (1990). https://doi.org/10.1016/0921-5093(90)90274-7

    Article  Google Scholar 

  34. J.I. Pérez-Landazábal, V. Recarte, J. Campo, M.L. Nó, J. San Juan, Neutron diffraction analysis of the β decomposition process in a texture free Cu–Al–Ni shape memory alloy. Physica B 350, 1007–1009 (2004). https://doi.org/10.1016/j.physb.2004.03.277

    Article  CAS  Google Scholar 

  35. V. Recarte, J.I. Pérez-Landazábal, A. Ibarra, M.L. Nó, J. San Juan, High temperature β phase decomposition process in a Cu–Al–Ni shape memory alloy. Mater. Sci. Eng. A 378, 238–242 (2004). https://doi.org/10.1016/j.msea.2003.09.111

    Article  CAS  Google Scholar 

  36. M. Benke, V. Mertinger, L. Daróczi, High-temperature transformation processes in Cu–13.4Al–5Ni shape memory alloy single crystals. J. Mater. Eng. Perform. 18, 496–499 (2009). https://doi.org/10.1007/s11665-009-9397-7

    Article  CAS  Google Scholar 

  37. Z.G. Wei, H.Y. Peng, W.H. Zou, D.Z. Yang, Aging effects in a Cu–12Al–5Ni–2Mn–1Ti shape memory alloy. Metall. Mater. Trans. A 29, 955–967 (1997). https://doi.org/10.1007/s11661-997-0226-z

    Article  Google Scholar 

  38. C. Tatar, Gamma irradiation-induced evolution of the transformation temperatures and thermodynamic parameters in a CuZnAl shape memory alloy. Thermochim. Acta 437, 121–125 (2005). https://doi.org/10.1016/j.tca.2005.06.030

    Article  CAS  Google Scholar 

  39. J. Ortin, A. Planes, Thermodynamics of thermoelastic martensittc transformations. Acta Metall. 37, 1433–1441 (1989). https://doi.org/10.1016/0001-6160(89)90175-2

    Article  CAS  Google Scholar 

  40. F. Dagdelen, M. Kok, I.N. Qader, Effects of Ta content on thermodynamic properties and transformation temperatures of shape memory NiTi alloy. Met. Mater. Int. (2019). https://doi.org/10.1007/s12540-019-00298-z

    Article  Google Scholar 

  41. J. Ortin, A. Planes, Thermodynamic analysis of thermal measurements in thermoelastic martensitic transformations. Acta Metall. 36(8), 1873–1889 (1988). https://doi.org/10.1016/0001-6160(88)90291-X

    Article  CAS  Google Scholar 

  42. E.M. Mazzer, C.S. Kiminami, C. Bolfarini, R.D. Cava, W.J. Botta, P. Gargarella, Thermodynamic analysis of the effect of annealing on the thermal stability of a Cu–Al–Ni–Mn shape memory alloy. Thermochim. Acta 608, 1–6 (2015). https://doi.org/10.1016/j.tca.2015.03.024

    Article  CAS  Google Scholar 

  43. W.H. Zou, H.Y. Peng, R. Wang, J. Gui, D.Z. Yang, heating effects on fine structure of a Cu–Al–Ni–Mn–Ti shape memory alloy. Acta Metall. Mater. 43, 3009–3016 (1995). https://doi.org/10.1016/0956-7151(95)00016-O

    Article  CAS  Google Scholar 

  44. J.M. Guilemany, J. Fernández, Relationships between structure and hardness developed during the high temperature ageing of a smart Cu–based alloy. J. Mater. Sci. 31, 4981–4984 (1996). https://doi.org/10.1007/BF00355890

    Article  CAS  Google Scholar 

  45. N. Suresh, U. Ramamurty, Aging response and its effect on the functional properties of Cu–Al–Ni shape memory alloys. J. Alloys Compd. 449, 113–118 (2008). https://doi.org/10.1016/j.jallcom.2006.02.094

    Article  CAS  Google Scholar 

  46. ShK Wu, W.J. Chan, ShH Chang, Damping characteristics of inherent and intrinsic internal friction of Cu–Zn–Al shape memory alloys. Metals 7(10), 397–406 (2017). https://doi.org/10.3390/met7100397

    Article  CAS  Google Scholar 

  47. J. Yang, Q.Z. Wang, F.X. Yin, C.X. Cui, P.G. Ji, B. Li, Effects of grain refinement on the structure and properties of a CuAlMn shape memory alloy. Mater. Sci. Eng. A 664, 214–220 (2016). https://doi.org/10.1016/j.msea.2016.04.009

    Article  CAS  Google Scholar 

  48. J.M. Jani, M. Leary, A. Subic, M.A. Gibson, A review of shape memory alloy research, applications and opportunities. Mater. Des. 56, 1078–1113 (2014). https://doi.org/10.1016/j.matdes.2013.11.084

    Article  CAS  Google Scholar 

  49. A. Pérez-Checa, J. Feuchtwanger, J.M. Barandiaran, V.A. Chernenko, Ni–Mn–Ga high temperature shape memory alloys: Function stability in β and β + γ regions. J. Alloys Compd. 741, 148–154 (2018). https://doi.org/10.1016/j.jallcom.2018.01.068

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors from University of Tehran acknowledge the financial support provided by the office of international affairs and the office for research affairs, college of engineering for the project number 8107009/6/39. Funding from Spanish Ministry of Economy and Competitiveness (project MAT2014-56116-C4-1-3-4-R) is acknowledged. Authors are also grateful to the technical support provided by SGIker (UPV/EHU, MINECO, GV/EJ, ERDF and ESF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pegah Dalvand, Shahram Raygan or Volodymyr A. Chernenko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalvand, P., Raygan, S., López, G.A. et al. Effect of Aging on the Structure and Transformation Behavior of Cu–12Al–3.5Ni–0.7Ti–0.05RE High Temperature Shape Memory Alloy. Met. Mater. Int. 26, 1354–1365 (2020). https://doi.org/10.1007/s12540-019-00376-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00376-2

Keywords

Navigation