Skip to main content
Log in

Microstructure, Texture and Tensile Properties of Nickel/Titanium Laminated Composites Produced by Cross Accumulative Roll Bonding Process

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The purpose of this paper is to examine the microstructural evolution and mechanical properties of Ni/Ti laminated composite produced by a cross-accumulative roll bonding (CARB) method. The SEM images showed that no void and delamination were observed which indicates that the layers were strongly bonded together. In addition to the thickness reduction and increased number of interfaces, plastic instabilities took place with an increase in CARB passes; the wavy-like interfaces appeared as a result of the necking and shear bands formation. However, due to the effect of uniform rolling pressure and rotation of rolling direction during the CARB process, all layers remained continuous in all CARB passes. The most marked observation coming from EBSD analyses was the formation of fine grains surrounded by a high fraction of high-angle grain boundaries (HAGBs). Based on the microtexture analyses on Ti and Ni layers, it was found that by increasing the rolling passes, a crystallographic texture formed in Ti layers gradually changes from the basic {0001}<112 ̅0 > system into the system dominated by {0001}<101 ̅0 > prismatic-like orientations. In the case of the crystallographic texture formed in Ni layers, there was a significant increase in the intensity of the Q{013}<231>; P{011}<122 > and Goss {011}<100>, indicating the formation of shear strain-assisted type of texture. Furthermore, with an increase in the CARB passes, the mechanical properties improved due to strong interfaces and grain refinement. The maximum values of the yield strength, tensile strength, and elongation reached 842 MPa, 936 MPa, and 7.1% respectively, in the final CARB pass. In addition, ductile fracture mainly occurred on fracture surfaces of Ti and Ni layers even though by increasing passes, cleavage facets appeared due to strain hardening.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. T. Mo, Z. Chen, D. Zhou, G. Lu, Y. Huang, Q. Liu, J. Mater. Sci. Technol. 99, 28 (2022)

    Google Scholar 

  2. R. Xu, N. Liang, L. Zhuang, D. Wei, Y. Zhao, Mater. Sci. Eng. A 832, 142510 (2022)

    CAS  Google Scholar 

  3. J. Huang, M. Tayyebi, A.H. Assari, J. Manuf. Process. 68, 57 (2021)

    Google Scholar 

  4. J. Luo, M. Yarigarravesh, A.H. Assari, N.H. Amin, M. Tayyebi, M. Paidar, J. Manuf. Process. 75, 670 (2022)

    Google Scholar 

  5. M. Tayyebi, M. Alizadeh, J. Alloys Compd. 911, 165078 (2022)

    CAS  Google Scholar 

  6. M. Tayyebi, M. Alizadeh, J. Manuf. Process. 85, 515 (2023)

    Google Scholar 

  7. Y. Wang, P. Huang, S. Liu, M. Tayyebi, M. Tayebi, J. Manuf. Process. 84, 977 (2022)

    Google Scholar 

  8. Y. Wang, M. Tayyebi, A. Assari, Arch. Civ. Mech. Eng. 22, 49 (2022)

    Google Scholar 

  9. Y. Wang, M. Tayyebi, M. Tayebi, M. Yarigarravesh, S. Liu, H. Zhang, J. Magnes. Alloy. 11, 966 (2023)

  10. Q. Ye, X. Li, M. Tayyebi, A.H. Assari, A. Polkowska, S. Lech, W. Polkowski, M. Tayebi, Arch. Civ. Mech. Eng. 23, 27 (2023)

    CAS  Google Scholar 

  11. Y. Zhao, C. Jiang, Z. Xu, F. Cai, Z. Zhang, P. Fu, Mater. Design 85, 39 (2015)

    CAS  Google Scholar 

  12. S. Santosh, G. Nithyanandh, J. Ashwath, K.L. Kishore, J. Alloys Compd. 924, 166027 (2022)

    CAS  Google Scholar 

  13. A. Samanta, H.-J. Fecht, I. Manna, P. Chattopadhyay, Mater. Chem. Phys. 104, 434 (2007)

    CAS  Google Scholar 

  14. W.P. Leser, J.A. Newman, J.D. Hochhalter, V.K. Gupta, F.G. Yuan, Fatigue Fract. Eng. Mater. Struct. 39, 686 (2016)

    Google Scholar 

  15. N. Ye, X. Ren, J. Liang, Metals 10, 354 (2020)

    CAS  Google Scholar 

  16. N. Ye, X. Ren, J. Liang, J. Mater. Res. Technol. 9, 5524 (2020)

    CAS  Google Scholar 

  17. S. Dilibal, J. Def. Sci. 15(2), 1 (2016)

  18. M. Frotscher, P. Nörtershäuser, C. Somsen, K. Neuking, R. Böckmann, G Eggeler, Mater. Sci. Eng. A 503, 96 (2009)

    Google Scholar 

  19. R. Jamaati, M.R. Toroghinejad, M. Hoseini, J.A. Szpunar, Mater. Sci. Technol. 28, 406 (2012)

    CAS  Google Scholar 

  20. Q. Yang, D.L. Cheng, J. Liu, L. Wang, Z. Chen, M.L. Wang, S.Y. Zhong, Y. Wu, G. Ji, H.W. Wang, Mater. Charact. 155, 109834 (2019)

    CAS  Google Scholar 

  21. A.J. Schwartz, M. Kumar, B.L. Adams, D.P. Field (eds.), Electron Backscatter Diffraction in Materials Science (Springer, New York, 2009)

  22. G. Anne, M. Ramesh, H. Shivananda Nayaka, S.B. Arya, S. Sahu, J. Mater. Eng. Perform. 26, 1726 (2017)

    CAS  Google Scholar 

  23. Y. Li, L. Wang, L. Zhu, Y. Li, Z. Yan, Y. Song, X. Cheng, J. Mater. Res. Technol. 21, 5111 (2022)

  24. O. Emadinia, S. Simões, F. Viana, M.F. Vieira, Microsc. Microanal. 21, 23 (2015)

    CAS  Google Scholar 

  25. C.C. Merriman, D.P. Field, P. Trivedi, Mater. Sci. Eng. A 494, 28 (2008)

    Google Scholar 

  26. M. Vaseghi, H. Zand, M. Sameezadeh, Int. J. Mater. Res. 111, 826 (2020)

    CAS  Google Scholar 

  27. M. Raei, M.R. Toroghinejad, R. Jamaati, Mater. Manuf. Process. 26, 1352 (2011)

    CAS  Google Scholar 

  28. A. Wagih, A. Fathy, D. Ibrahim, O. Elkady, M. Hassan, J. Alloys Compd. 752, 137 (2018)

    CAS  Google Scholar 

  29. S. Simões, A. Ramos, F. Viana, O. Emadinia, M. Vieira, M. Vieira, J. Mater. Eng. Perform. 25, 4394 (2016)

    Google Scholar 

  30. R. Jamaati, M.R. Toroghinejad, Mater. Design 31, 4816 (2010)

    CAS  Google Scholar 

  31. T. Inoue, A. Yanagida, J. Yanagimoto, Mater. Lett. 106, 37 (2013)

    CAS  Google Scholar 

  32. H. Wang, L. Su, H. Yu, C. Lu, A. Kiet Tieu, Y. Liu, J. Zhang, Mater. Sci. Eng. A 726, 93 (2018)

    CAS  Google Scholar 

  33. D. Yang, P. Cizek, P. Hodgson, Scripta Mater. 62, 321 (2010)

    CAS  Google Scholar 

  34. D.A. Hughes, N. Hansen, Acta Mater. 48, 2985 (2000)

    CAS  Google Scholar 

  35. D. Terada, S. Inoue, N. Tsuji, J. Mater. Sci. 42, 1673 (2007)

    CAS  Google Scholar 

  36. N. Hansen, Award Medalist, Metall. Mater. Trans. A 32, 2917 (2001)

  37. Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, Acta Mater. 46, 3317 (1998)

    CAS  Google Scholar 

  38. J. Grasserbauer, I. Weißensteiner, G. Falkinger, S. Mitsche, P.J. Uggowitzer, S. Pogatscher, Materials 13, 469 (2020)

    CAS  Google Scholar 

  39. L.A.I. Kestens, H. Pirgazi, Mater. Sci. Technol. 32, 1303 (2016)

  40. W. Polkowski, P. Jóźwik, K. Karczewski, Z. Bojar, Arch. Civ. Mech. Eng. 14, 550 (2014)

    Google Scholar 

  41. W. Polkowski, A. Polkowska, D. Zasada, Mater. Charact. 130, 173 (2017)

    CAS  Google Scholar 

  42. A. Polkowska, S. Lech, W. Polkowski, Mater. Sci. Eng. A 787, 139478 (2020)

    CAS  Google Scholar 

  43. N. Ye, X. Ren, J. Chem. 2020, 7584896 (2020)

  44. C. Ding, J. Xu, X. Li, D. Shan, B. Guo, TG Langdon, Adv. Eng. Mater. 22, 1900702 (2020)

    CAS  Google Scholar 

  45. F.J. Simoes, R.J.A. de Sousa, J.J. Gracio, F. Barlat, J.W. Yoon, Int. J. Mech. Sci. 50, 1372 (2008)

    Google Scholar 

  46. Y. Wang, J. Huang, Mater. Chem. Phys. 81, 11 (2003)

    CAS  Google Scholar 

  47. X. Huang, K. Suzuki, Y. Chino, Scripta Mater. 63, 473 (2010)

    CAS  Google Scholar 

  48. J. Luo, R. Khattinejad, A. Assari, M. Tayyebi, B Hamawandi, Crystals 13, 354 (2023)

    CAS  Google Scholar 

  49. S. Jiang, R. Lin Peng, Z. Hegedűs, T. Gnäupel-Herold, J. J. Moverare, U. Lienert, F. Fang, X. Zhao, L. Zuo, N. Jia, Acta Mater. 205, 116546 (2021)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moslem Tayyebi.

Ethics declarations

Conflict of Interest

This paper is original and has not been submitted elsewhere. The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Tayyebi, M., Assari, A.H. et al. Microstructure, Texture and Tensile Properties of Nickel/Titanium Laminated Composites Produced by Cross Accumulative Roll Bonding Process. Met. Mater. Int. 29, 3630–3644 (2023). https://doi.org/10.1007/s12540-023-01461-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01461-3

Keywords

Navigation