Skip to main content
Log in

Optimal shape design of the film-coupled nanoparticle using the phase field design method

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Localized surface plasmon resonance (LSPR) occurs when an electromagnetic (EM) wave hits a metal nanoparticle. The interaction between a gold (Au) nanoparticle and a thin metal film produces a strong EM wave called as LSPR at the small gap between the nanoparticle and the film. The field strength of the LSPR increases dramatically as the distance between the Au nanoparticle and the film decreases. In this study, we focus on the field enhancement at the small gap by obtaining the appropriate shape of the Au nanoparticle. Since the shape or the size of a nanoparticle to enhance the LSPR is hard to be determined theoretically, the structural optimization method based on the phase field method is employed to design the shape of the nanoparticle. To obtain reliable results taking the small gap of 2 nm into account, we proposed a new filtering scheme based on a smoothed Heaviside function and applied it to nanoparticle design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ciracì, C., Hill, R. T., Mock, J. J., Urzhumov, Y., Fernández- Domínguez, A. I., et al., “Probing the Ultimate Limits of Plasmonic Enhancement, Science, Vol. 337, No. 6098, pp. 1072–1074, 2012.

    Article  Google Scholar 

  2. Mock, J. J., Hill, R. T., Tsai, Y.-J., Chilkoti, A., and Smith, D. R., “Probing Dynamically Tunable Localized Surface Plasmon Resonances of Film-Coupled Nanoparticles by Evanescent Wave Excitation, Nano Letters, Vol. 12, No. 4, pp. 1757–1764, 2012.

    Article  Google Scholar 

  3. Akimov, Y. A., Koh, W. S., and Ostrikov, K., “Enhancement of Optical Absorption in Thin-Film Solar Cells through the Excitation of Higher-Order Nanoparticle Plasmon Modes, Optics Express, Vol. 17, No. 12, pp. 10195–10205, 2009.

    Article  Google Scholar 

  4. Choi, S.-W., Kim, H.-S., Kang, W.-S., Kim, J.-H., Cho, Y.-J., and Kim, J.-H., “Sensitivity Enhancement by Au Nanoparticles in Surface Plasmon Resonance Chemical Sensors, Journal of Nanoscience and Nanotechnology, Vol. 8, No. 9, pp. 4569–4573, 2008.

    Article  Google Scholar 

  5. Bedford, E. E., Spadavecchia, J., Pradier, C. M., and Gu, F. X., “Surface Plasmon Resonance Biosensors Incorporating Gold Nanoparticles, Macromolecular Bioscience, Vol. 12, No. 6, pp. 724–739, 2012.

    Article  Google Scholar 

  6. Yoon, I., Kang, T., Choi, W., Kim, J., Yoo, Y., et al., “Single Nanowire on a Film as an Efficient Sers-Active Platform, Journal of the American Chemical Society, Vol. 131, No. 2, pp. 758–762, 2009.

    Article  Google Scholar 

  7. Bendsøe, M. P. and Kikuchi, N., “Generating Optimal Topologies in Structural Design using a Homogenization Method, Computer Methods in Applied Mechanics and Engineering, Vol. 71, No. 2, pp. 197–224, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  8. Suzuki, K. and Kikuchi, N., “A Homogenization Method for Shape and Topology Optimization, Computer Methods in Applied Mechanics and Engineering, Vol. 93, No. 3, pp. 291–318, 1991.

    Article  MATH  Google Scholar 

  9. Diaz, A. R. and Kikuchi, N., “Solutions to Shape and Topology Eigenvalue Optimization Problems using a Homogenization Method, International Journal for Numerical Methods in Engineering, Vol. 35, No. 7, pp. 1487–1502, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  10. Yoo, J. and Kikuchi, N., “Topology Optimization in Magnetic Fields using the Homogenization Design Method, Vol. 48, No. 10, pp. 1463–1479, 2000.

    Google Scholar 

  11. Bendsøe, M. P., “Optimal Shape Design as a Material Distribution Problem, Structural Optimization, Vol. 1, No. 4, pp. 193–202, 1989.

    Article  Google Scholar 

  12. Bendsoe, M. P. and Sigmund, O., “Topology optimization: Theory, Methods, and Applications, Springer Science & Business Media, pp. 1–20, 2003.

    Google Scholar 

  13. DeRose Jr, G. and Diaz, A., “Solving Three-Dimensional Layout Optimization Problems using Fixed Scale Wavelets, Computational Mechanics, Vol. 25, No. 2 , pp. 274–285, 2000.

    Article  MATH  Google Scholar 

  14. Pedersen, N. L., “On Topology Optimization of Plates with Prestress, International Journal for Numerical Methods in Engineering, Vol. 51, No. 2, pp. 225–239, 2001.

    Article  MATH  Google Scholar 

  15. Poulsen, T. A., “A New Scheme for Imposing a Minimum Length Scale in Topology Optimization, International Journal for Numerical Methods in Engineering, Vol. 57, No. 6, pp. 741–760, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  16. Seyranian, A. P., Lund, E., and Olhoff, N., “Multiple Eigenvalues in Structural Optimization Problems, Structural Optimization, Vol. 8, No. 4, pp. 207–227, 1994.

    Article  Google Scholar 

  17. Kim, C. and Shin, J.-W., “Topology Optimization of Piezoelectric Materials and Application to the Cantilever Beams for Vibration Energy Harvesting, Int. J. Precis. Eng. Manuf., Vol. 14, No. 11, pp. 1925–1931, 2013.

    Article  MathSciNet  Google Scholar 

  18. Jensen, J. S. and Sigmund, O., “Systematic Design of Photonic Crystal Structures using Topology Optimization: Low-Loss Waveguide Bends, Applied Physics Letters, Vol. 84, No. 12, pp. 2022–2024, 2004.

    Article  Google Scholar 

  19. Nomura, T., Nishiwaki, S., Sato, K., and Hirayama, K., “Topology Optimization for the Design of Periodic Microstructures Composed of Electromagnetic Materials, Finite Elements in Analysis and Design, Vol. 45, No. 3, pp. 210–226, 2009.

    Article  MathSciNet  Google Scholar 

  20. Sethian, J. A. and Wiegmann, A., “Structural Boundary Design via Level Set and Immersed Interface Methods, Journal of Computational Physics, Vol. 163, No. 2, pp. 489–528, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, M. Y., Wang, X., and Guo, D., “A Level Set Method for Structural Topology Optimization, Computer Methods in Applied Mechanics and Engineering, Vol. 192, No. 1, pp. 227–246, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  22. Allaire, G., Jouve, F., and Toader, A.-M., “Structural Optimization using Sensitivity Analysis and a Level-Set Method, Journal of Computational Physics, Vol. 194, No. 1, pp. 363–393, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  23. Yamada, T., Izui, K., Nishiwaki, S., and Takezawa, A., “A Topology Optimization Method based on the Level Set Method Incorporating a Fictitious Interface Energy, Computer Methods in Applied Mechanics and Engineering, Vol. 199, No. 45, pp. 2876–2891, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  24. Yamada, T., Izui, K., and Nishiwaki, S., “A Level Set-based Topology Optimization Method for Maximizing Thermal Diffusivity in Problems including Design-Dependent Effects, Journal of Mechanical Design, Vol. 133, No. 3, Paper No. 031011, 2011.

    Google Scholar 

  25. Lu, L., Yamamoto, T., Otomori, M., Yamada, T., Izui, K., and Nishiwaki, S., “Topology Optimization of an Acoustic Metamaterial with Negative Bulk Modulus using Local Resonance, Finite Elements in Analysis and Design, Vol. 72, No. pp. 1–12, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  26. Lim, H., Yoo, J., and Choi, J. S., “Topological Nano-Aperture Configuration by Structural Optimization based on the Phase Field Method, Structural and Multidisciplinary Optimization, Vol. 49, No. 2, pp. 209–224, 2014.

    Article  MathSciNet  Google Scholar 

  27. Lim, D., Shin, D., Shin, H., Kim, K., and Yoo, J., “A Systematic Approach to Enhance Off-Axis Directional Electromagnetic Wave by Two-Dimensional Structure Design, Optics Express, Vol. 22, No. 6, pp. 6511–6518, 2014.

    Article  Google Scholar 

  28. Byun, S., Lee, H. Y., and Yoo, J., “Systematic Approach of Nanoparticle Design to Enhance the Broadband Plasmonic Scattering Effect, Journal of Applied Physics, Vol. 115, No. 18, pp. 184302, 2014.

    Article  Google Scholar 

  29. Choi, J. S., Yamada, T., Izui, K., Nishiwaki, S., and Yoo, J., “Topology Optimization using a Reaction–Diffusion Equation, Computer Methods in Applied Mechanics and Engineering, Vol. 200, No. 29, pp. 2407–2420, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  30. Takezawa, A., Nishiwaki, S., and Kitamura, M., “Shape and Topology Optimization based on the Phase Field Method and Sensitivity Analysis, Journal of Computational Physics, Vol. 229, No. 7, pp. 2697–2718, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  31. Choi, J.S., Izui, K., Nishiwaki, S., Kawamoto, A., and Nomura, T., “Rotor Pole Design of IPM Motors for a Sinusoidal Air-Gap Flux Density Distribution, Structural and Multidisciplinary Optimization, Vol. 46, No. 3, pp. 445–455, 2012.

    Article  Google Scholar 

  32. Pendry, J. B., Aubry, A., Smith, D. R., and Maier, S. A., “Transformation Optics and Subwavelength Control of Light, Science, Vol. 337, No. 6094, pp. 549–552, 2012.

    Article  MathSciNet  Google Scholar 

  33. Ciracì, C., Rose, A., Argyropoulos, C., and Smith, D. R., “Numerical Studies of the Modification of Photodynamic Processes by Film-Coupled Plasmonic Nanoparticles, Journal of the Optical Society of America B, Vol. 31, No. 11, pp. 2601–2607, 2014.

    Article  Google Scholar 

  34. Refractive Index, “Refractive Index Database, http://refractiveindex.info/?shelf=main&book=Au&page=Rakic (Accessed 13 MAR 2016)

    Google Scholar 

  35. Guest, J. K., Prévost, J. H., and Belytschko, T., “Achieving Minimum Length Scale in Topology Optimization using Nodal Design Variables and Projection Functions, International Journal for Numerical Methods in Engineering, Vol. 61, No. 2, pp. 238–254, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  36. Sigmund, O., “Morphology-based Black and White Filters for Topology Optimization, Structural and Multidisciplinary Optimization, Vol. 33, No. 4 , pp. 401–424, 2007.

    Article  Google Scholar 

  37. Xu, S., Cai, Y., and Cheng, G., “Volume Preserving Nonlinear Density Filter based on Heaviside Functions, Structural and Multidisciplinary Optimization, Vol. 41, No. 4, pp. 495–505, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  38. Yamada, T., Watanabe, H., Fujii, G., and Matsumoto, T., “Topology Optimization for a Dielectric Optical Cloak based on an Exact Level Set Approach, IEEE Transactions on Magnetics, Vol. 49, No. 5, pp. 2073–2076, 2013

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeonghoon Yoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, HY., Seong, H.K. & Yoo, J. Optimal shape design of the film-coupled nanoparticle using the phase field design method. Int. J. Precis. Eng. Manuf. 17, 453–460 (2016). https://doi.org/10.1007/s12541-016-0056-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-016-0056-2

Keywords

Navigation