Skip to main content
Log in

Measuring the flow of molecules in cells

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

No methods proposed thus far have the capability to measure molecular flow in live cells at the single molecule level. Here, we review the potentiality of a newly established method based on the spatial correlation of fluorescence fluctuations at a pair of points in the sample (pair correlation method). The pair correlation function (pCF) offers a unique tool to probe the directionality of intracellular traffic, by measuring the accessibility of the cellular landscape and its role in determining the diffusive routes adopted by molecules. The sensitivity of the pCF method toward detection of barriers means that different structural elements of the cell can be tested in terms of penetrability and mechanisms of regulation imparted on molecular flow. This has been recently demonstrated in a series of studies looking at molecular transport inside live cells. Here, we will review the theory behind detection of barriers to molecular flow, the rules to interpret pCF data, and relevant applications to intracellular transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Calapez A, Pereira HM, Calado A, Braga J, Rino J, Carvalho C, Tavanez JP, Wahle E, Rosa AC, Carmo-Fonseca M (2002) The intranuclear mobility of messenger RNA binding proteins is ATP dependent and temperature sensitive. J Cell Biol 159(5):795–805

    Article  PubMed  CAS  Google Scholar 

  • Cardarelli F, Gratton E (2010) In vivo imaging of single-molecule translocation through nuclear pore complexes by pair correlation functions. PLoS One 5(5):e10475

    Article  PubMed  Google Scholar 

  • Cardarelli F, Serresi M, Bizzarri R, Giacca M, Beltram F (2007) In vivo study of HIV-1 Tat arginine-rich motif unveils its transport properties. Mol Ther 15(7):1313–1322

    Article  PubMed  CAS  Google Scholar 

  • Cardarelli F, Serresi M, Bizzarri R, Beltram F (2008) Tuning the transport properties of HIV-1 Tat arginine-rich motif in living cells. Traffic 9(4):528–539

    Article  PubMed  CAS  Google Scholar 

  • Cardarelli F, Bizzarri R, Serresi M, Albertazzi L, Beltram F (2009) Probing nuclear localization signal-importin alpha binding equilibria in living cells. J Biol Chem 284(52):36638–36646

    Article  PubMed  CAS  Google Scholar 

  • Cardarelli F, Serresi M, Albanese A, Bizzarri R, Beltram F (2011) Quantitative analysis of tat peptide binding to import carriers reveals unconventional nuclear transport properties. J Biol Chem 286(14):12292–12299

    Google Scholar 

  • Ciciarello M, Mangiacasale R, Thibier C, Guarguaglini G, Marchetti E, Di Fiore B, Lavia P (2004) Importin beta is transported to spindle poles during mitosis and regulates Ran-dependent spindle assembly factors in mammalian cells. J Cell Sci 117(Pt 26):6511–6522

    Article  PubMed  CAS  Google Scholar 

  • Cinquin O, Crittenden SL, Morgan DE, Kimble J (2010) Progression from a stem cell-like state to early differentiation in the C. elegans germ line. Proc Natl Acad Sci USA 107(5):2048–2053

    Article  PubMed  CAS  Google Scholar 

  • Cronshaw JM, Krutchinsky AN, Zhang W, Chait BT, Matunis MJ (2002) Proteomic analysis of the mammalian nuclear pore complex. J Cell Biol 158(5):915–927

    Article  PubMed  CAS  Google Scholar 

  • Dange T, Grunwald D, Grunwald A, Peters R, Kubitscheck U (2008) Autonomy and robustness of translocation through the nuclear pore complex: a single-molecule study. J Cell Biol 183(1):77–86

    Article  PubMed  CAS  Google Scholar 

  • Dertinger T, Loman A, Ewers B, Muller CB, Kramer B, Enderlein J (2008) The optics and performance of dual-focus fluorescence correlation spectroscopy. Opt Express 16(19):14353–14368

    Article  PubMed  Google Scholar 

  • Digman MA, Gratton E (2009a) Analysis of diffusion and binding in cells using the RICS approach. Microsc Res Tech 72(4):323–332

    Article  Google Scholar 

  • Digman MA, Gratton E (2009b) Imaging barriers to diffusion by pair correlation functions. Biophys J 97(2):665–673

    Article  CAS  Google Scholar 

  • Digman MA, Brown CM, Sengupta P, Wiseman PW, Horwitz AR, Gratton E (2005) Measuring fast dynamics in solutions and cells with a laser scanning microscope. Biophys J 89(2):1317–1327

    Article  PubMed  CAS  Google Scholar 

  • Dross N, Spriet C, Zwerger M, Muller G, Waldeck W, Langowski J (2009) Mapping eGFP oligomer mobility in living cell nuclei. PLoS One 4(4):e5041

    Article  PubMed  Google Scholar 

  • Fahrenkrog B, Aebi U (2003) The nuclear pore complex: nucleocytoplasmic transport and beyond. Nat Rev Mol Cell Biol 4(10):757–766

    PubMed  CAS  Google Scholar 

  • Gorlich D, Kutay U (1999) Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 15:607–660

    Article  PubMed  CAS  Google Scholar 

  • Herrmann M, Neuberth N, Wissler J, Perez J, Gradl D, Naber A (2009) Near-field optical study of protein transport kinetics at a single nuclear pore. Nano Lett 9(9):3330–3336

    Article  PubMed  CAS  Google Scholar 

  • Hinde E, Cardarelli F, Digman MA, Gratton E (2010) In vivo pair correlation analysis of EGFP intranuclear diffusion reveals DNA-dependent molecular flow. Proc Natl Acad Sci USA 107(38):16560–16565

    Article  PubMed  CAS  Google Scholar 

  • Hinde E, Cardarelli F, Digman MA, Kershner A, Kimble J, Gratton E (2011) The impact of mitotic versus interphase chromatin architecture on the molecular flow of EGFP by pair correlation analysis. Biophys J 100(7):1829–1836

    Article  PubMed  CAS  Google Scholar 

  • Karpova TS, Chen TY, Sprague BL, McNally JG (2004) Dynamic interactions of a transcription factor with DNA are accelerated by a chromatin remodeller. EMBO Rep 5(11):1064–1070

    Article  PubMed  CAS  Google Scholar 

  • Kim SA, Heinze KG, Schwille P (2007) Fluorescence correlation spectroscopy in living cells. Nat Methods 4(11):963–973

    Article  PubMed  CAS  Google Scholar 

  • Korlann Y, Dertinger T, Michalet X, Weiss S, Enderlein J (2008) Measuring diffusion with polarization-modulation dual-focus fluorescence correlation spectroscopy. Opt Express 16(19):14609–14616

    Article  PubMed  Google Scholar 

  • Kubitscheck U, Grunwald D, Hoekstra A, Rohleder D, Kues T, Siebrasse JP, Peters R (2005) Nuclear transport of single molecules: dwell times at the nuclear pore complex. J Cell Biol 168(2):233–243

    Article  PubMed  Google Scholar 

  • Lanctot C, Cheutin T, Cremer M, Cavalli G, Cremer T (2007) Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet 8(2):104

    Article  PubMed  CAS  Google Scholar 

  • Levi V, Ruan Q, Gratton E (2005) 3-D particle tracking in a two-photon microscope: application to the study of molecular dynamics in cells. Biophys J 88(4):2919–2928

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Yang W (2010) Three-dimensional distribution of transient interactions in the nuclear pore complex obtained from single-molecule snapshots. Proc Natl Acad Sci USA 107(16):7305–7310

    Article  PubMed  CAS  Google Scholar 

  • Macara IG (2001) Transport into and out of the nucleus. Microbiol Mol Biol Rev 65(4):570–594, table of contents

    Article  PubMed  CAS  Google Scholar 

  • Paine PL (1975) Nucleocytoplasmic movement of fluorescent tracers microinjected into living salivary gland cells. J Cell Biol 66(3):652–657

    Article  PubMed  CAS  Google Scholar 

  • Pemberton LF, Paschal BM (2005) Mechanisms of receptor-mediated nuclear import and nuclear export. Traffic 6(3):187–198

    Article  PubMed  CAS  Google Scholar 

  • Phair RD, Misteli T (2000) High mobility of proteins in the mammalian cell nucleus. Nature 404(6778):604–609

    Article  PubMed  CAS  Google Scholar 

  • Politz JC, Browne ES, Wolf DE, Pederson T (1998) Intranuclear diffusion and hybridization state of oligonucleotides measured by fluorescence correlation spectroscopy in living cells. Proc Natl Acad Sci USA 95(11):6043–6048

    Article  PubMed  CAS  Google Scholar 

  • Politz JC, Tuft RA, Pederson T (2003) Diffusion-based transport of nascent ribosomes in the nucleus. Mol Biol Cell 14(12):4805–4812

    Article  PubMed  CAS  Google Scholar 

  • Ries J, Schwille P (2006) Studying slow membrane dynamics with continuous wave scanning fluorescence correlation spectroscopy. Biophys J 91(5):1915–1924

    Article  PubMed  CAS  Google Scholar 

  • Rossow MJ, Sasaki JM, Digman MA, Gratton E (2011) Raster image correlation spectroscopy in live cells. Nat Protoc 5(11):1761–1774

    Article  Google Scholar 

  • Seksek O, Biwersi J, Verkman AS (1997) Translational diffusion of macromolecule-sized solutes in cytoplasm and nucleus. J Cell Biol 138(1):131–142

    Article  PubMed  CAS  Google Scholar 

  • Soutoglou E, Misteli T (2007) Mobility and immobility of chromatin in transcription and genome stability. Curr Opin Genet Dev 17(5):435–442

    Article  PubMed  CAS  Google Scholar 

  • Tini M, Benecke A, Um SJ, Torchia J, Evans RM, Chambon P (2002) Association of CBP/p300 acetylase and thymine DNA glycosylase links DNA repair and transcription. Mol Cell 9(2):265–277

    Article  PubMed  CAS  Google Scholar 

  • Wachsmuth M, Waldeck W, Langowski J (2000) Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially-resolved fluorescence correlation spectroscopy. J Mol Biol 298(4):677–689

    Article  PubMed  CAS  Google Scholar 

  • Weis K (2003) Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle. Cell 112(4):441–451

    Article  PubMed  CAS  Google Scholar 

  • Woodcock CL, Ghosh RP (2010) Chromatin higher-order structure and dynamics. Cold Spring Harb Perspect Biol 2(5):a000596

    Article  PubMed  Google Scholar 

  • Yang W, Gelles J, Musser SM (2004) Imaging of single-molecule translocation through nuclear pore complexes. Proc Natl Acad Sci USA 101(35):12887–12892

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Enrico Gratton for his invaluable contribution to this work through teaching, continuous motivation and discussion. The authors would also like to thank Michelle Digman for her precious help with planning experiments and discussion of data. This work was supported by NIH-P41-RRO3155, P50-GM076516 and NIH-U54 GM064346 Cell Migration Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Cardarelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinde, E., Cardarelli, F. Measuring the flow of molecules in cells. Biophys Rev 3, 119–129 (2011). https://doi.org/10.1007/s12551-011-0051-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-011-0051-x

Keywords

Navigation