Skip to main content
Log in

A review on propagation-invariant, quasi-propagation-invariant beams and coordinate axicons

  • Tutorial Paper
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Propagation-invariant and structurally-stable beams have attracted the attention of research communities for their distinct appearances and angular momentum contents, as well as their unique applications. These special kind of beams are mostly descripted by various forms of wave equation. However, the recently described fractional wave equation and fractional Schrodinger equation have added a new aspect to these beams, and supports the idea of Coordinate Axicons—the axicons that follows the shapes of corresponding coordinate system and able to produce quasi-propagation-invariant beams at far field. In this present communication we therefore revisit the theoretical aspects of such beams giving special thrust to the Coordinate Axicon concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. S.N. Khonina, N.L. Kazanskiy, S.V. Karpeev, M.A. Butt, Bessel Beam: Significance and applications—a progressive review. Micromachines 11(11), 997 (2020). https://doi.org/10.3390/mi11110997

    Article  Google Scholar 

  2. J. Arlt, M.J. Padgett, Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam. Opt. Lett. 25, 4 (2000)

    Article  Google Scholar 

  3. D. McGloin, K. Dholakia, Bessel beams: diffraction in a new light. Contemp. Phys. 46(1), 15 (2005). https://doi.org/10.1080/0010751042000275259

    Article  ADS  Google Scholar 

  4. S.N. Khonina, V.V. Kotlyar, V.A. Soifer, J. Lautanen, M. Honkanen, J. Turunen, Generating a couple of rotating nondiffracting beams using a binary-phase DOE. Optik 110(3), 137 (1999)

    Google Scholar 

  5. N. Chattrapiban, E.A. Rogers, D. Cofield, W.T. Hill, R. Roy, Generation of nondiffracting bessel beams by use of a spatial light modulator. Opt. Lett. 28(22), 2183 (2003). https://doi.org/10.1364/OL.28.002183

    Article  ADS  Google Scholar 

  6. J. Courtial, G. Whyte, Z. Bouchal, J. Wagner, Iterative algorithms for holographic shaping of non-diffracting and self-imaging light beams. Opt. Express 14(6), 2108 (2006). https://doi.org/10.1364/OE.14.002108

    Article  ADS  Google Scholar 

  7. M. Anguiano-Morales, A. Martinez, M.D. Iturbe-Castillo, S. Chávez-Cerda, Different field distributions obtained with an axicon and an amplitude mask. Opt. Commun. 281(3), 401 (2008). https://doi.org/10.1016/j.optcom.2007.10.013

    Article  ADS  Google Scholar 

  8. S.N. Khonina, Simple way for effective formation various nondiffractive laser beams. Comput. Opt. 33(1), 70 (2009)

    Google Scholar 

  9. S.N. Khonina, A.V. Ustinov, S. Chávez-Cerda, Generalized parabolic nondiffracting beams of two orders. J. Opt. Soc. Amer. A 35(9), 1511 (2018)

    Article  ADS  Google Scholar 

  10. V Basistiy, V.A Pas’ko, V.V Slyusa, M.S Soskin, M.V Vasnetsov, Synthesis and analysis of optical vortices with fractional topological charges. J. Opt. A. (2004). http://dx.doi.org/https://doi.org/10.1088/1464-4258/6/5/003

  11. L.C. Thomson, J. Courtial, Holographic shaping of generalized self-reconstructing light beams. Opt. Commun. 281(5), 1217 (2008). https://doi.org/10.1016/j.optcom.2007.10.110

    Article  ADS  Google Scholar 

  12. J.C Gutiérrez-Vega, M.D Iturbe-Castillo, G.A Ramıŕez, E Tepichin, R.M Rodriguez-Dagnino, S Chávez Cerda, G.H.C New, Experimental demonstration of optical mathieu beams. Opt. Commun. 195 (1–4) 35 (2001). http://dx. doi.org/https://doi.org/10.1016/S0030-4018(01)01319-0

  13. M.A. Bandres, J.C. Gutiérrez-Vega, S. Chávez-Cerda, Parabolic nondiffracting optical wave fields. Opt. Lett. 29(1), 44 (2004). https://doi.org/10.1364/OL.29.000044

    Article  ADS  Google Scholar 

  14. C. López-Mariscal, M.A. Bandres, J.C. Gutiérrez-Vega, S. Chávez-Cerda, Observation of parabolic nondiffracting optical fields. Opt. Express 13(7), 2364 (2005). https://doi.org/10.1364/OPEX.13.002364

    Article  ADS  Google Scholar 

  15. S.N. Khonina, A.V. Ustinov, A.P. Porfirev, Fractional two-parameter parabolic diffraction-free beams. Opt Commun 450, 103 (2019)

    Article  ADS  Google Scholar 

  16. J Durnin, Exact solutions for nondiffracting beams, I. The scalar theory. J. Opt. Soc. Amer. A 4 651 (1987). http://dx.doi.org/https://doi.org/10.1364/JOSAA.4.000651.

  17. J. Durnin, J.J. Miceli Jr., J.H. Eberly, Diffraction-free beams. Phys. Rev. Lett. 58, 1499 (1987). https://doi.org/10.1103/PhysRevLett.58.1499

    Article  ADS  Google Scholar 

  18. J.C Gutiérrez-Vega and M.A Bandres, Helmholtz–Gauss waves, J. Opt. Soc. Am. A. 22, 289 (2005). https://www.osapublishing.org/josaa/abstract.cfm?URI=josaa-22-2-289

  19. C. Lopez-Mariscal, M.A. Bandres, J.C. Gutierrez-Vega, Observation of the experimental propagation properties of Helmholtz-Gauss beams. Opt. Eng. 45(6), 068001 (2006). https://doi.org/10.1117/1.2210485

    Article  ADS  Google Scholar 

  20. M.B. Alvarez-Elizondo, R. Rodríguez-Masegosa, J.C. Gutiérrez-Vega, Generation of mathieu–gauss modes with an axicon-based laser resonator. Opt. Express 16(23), 18770 (2008). https://doi.org/10.1364/OE.16.018770

    Article  ADS  Google Scholar 

  21. Y.X. Ren, Z.C. Fang, L. Gong, K. Huang, Y. Chen, R.D. Lu, Dynamic generation of Ince-Gaussian modes with a digital micromirror device. J. Appl. Phys. 117, 133106 (2015). https://doi.org/10.1063/1.4915478

    Article  ADS  Google Scholar 

  22. V Salomatov, Klein-Gordon and Schrödinger equations for a free particle in the rest frame. Hal-02336564, (2019). https://hal.archives-ouvertes.fr/hal-02336564

  23. V. Salomatov, Helmholtz equation in relativistic quantum mechanics. Phys. Essays 30(2), 177 (2017)

    Article  ADS  Google Scholar 

  24. R.G Littlejohn, Introduction to relativistic quantum mechanics and the klein-gordon equation http://bohr.physics.berkeley.edu/classes/221/1112/notes/kleing.pdf

  25. R. Chakraborty, A. Ghosh, Generation of an elliptic hollow beam using mathieu and bessel functions. JOSA A 23, 2278 (2006)

    Article  ADS  Google Scholar 

  26. R. Chakraborty, A. Ghosh, Structurally stable hyperbolic beam. Jpn. J. Appl. Phys. 48, 082405 (2009)

    Article  ADS  Google Scholar 

  27. R. Chakraborty, A. Ghosh, Generation of an elliptic bessel beam. Opt. Lett. 31, 38 (2006)

    Article  ADS  Google Scholar 

  28. R. Chakraborty, A. Ghosh, A.K. Chakraborty, Space Bound Optical Vortex: A Novel Concept. Jpn. J. Appl. Phys. 48, 082401 (2009)

    Article  ADS  Google Scholar 

  29. J.W Goodman (ed.), Introduction to Fourier Optics, Roberts and Company (Englewood, Colorado, USA, 2005)

  30. M Abramowitz and I.A Stegun, in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. (New York: Dover, 1972), p. 721–746

  31. J Blackledge, Optical Image Formation from Digital Image Processing 1st Edition Mathematical and Computational Methods, eBook ISBN: 9780857099464, (2005)

  32. A.E Siegman, Lasers, (University Science Books Sausalito, California, USA, 1986)

  33. J. Li, Asymmetric multiple-image encryption based on octonion fresnel transform and sine logistic modulation map. J. Opt. Soc. Korea 20(3), 341 (2016)

    Article  Google Scholar 

  34. A.N. Norris, T.B. Hansen, Exact complex source representations of time-harmonic radiation. Wave Motion 25(2), 127 (1997)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  35. Jordan, H Rebecca, and D.G Hall, Free-space azimuthal paraxial wave equation: the azimuthal Bessel–Gauss beam solution. Opt. let. 19(7), 427(1994)

  36. D.G. Hall, Vector-beam solutions of Maxwell’s wave equation. Opt. Lett. 21, 9 (1996)

    Article  ADS  Google Scholar 

  37. F. Gori, G. Guattari, C. Padovani, Bessel-Gauss beams. Opt. Comm. 64(6), 491 (1987)

    Article  ADS  Google Scholar 

  38. Xu, Xiaohao, and M Nieto-Vesperinas, Azimuthal imaginary poynting momentum density. Physical review letters. 123(23), 233902 (2019)

  39. M.V. Berry, N.L. Balázs, Nonspreading wave packets. Am. J. Phys. 47(3), 264 (1979)

    Article  ADS  Google Scholar 

  40. Airy Beam, Wikipedia, https://en.wikipedia.org/wiki/Airy_beam#Notes_and_references

  41. N.K Efremidis, Z Chen, M Segev, and D.N Christodoulides, Airy beams and accelerating waves: an overview of recent advances, Optica 6(5), (2019)

  42. D. Colas, Self-accelerating beam dynamics in the space fractional Schrodinger equation. Phys. Rev. Research 2, 033274 (2020)

    Article  ADS  Google Scholar 

  43. G.A. Siviloglou, J. Broky, A. Dogariu, D.N. Christodoulides, Observation of accelerating airy beams. Phys. Rev. Lett. 99, 213901 (2007)

    Article  ADS  Google Scholar 

  44. I. Bialynicki-Birula, Z. Bialynicka-Birula, Quantum-mechanical description of optical beams. J. Opt. 19, 125201 (2017)

    Article  MATH  ADS  Google Scholar 

  45. A.V. Galaktionov, Features of photon diffusion in a dispersed medium. J. Phys. Conf. Ser. 2100, 012022 (2021)

    Article  Google Scholar 

  46. K. Kanazawa, T.G. Sano, A. Cairoli et al., Loopy Lévy flights enhance tracer diffusion in active suspensions. Nature 579, 364–367 (2020). https://doi.org/10.1038/s41586-020-2086-2

    Article  ADS  Google Scholar 

  47. N. Laskin, Fractional quantum mechanics. Phys. Rev. E 62, 3135 (2000)

    Article  MATH  ADS  Google Scholar 

  48. N. Laskin, Fractional Schrödinger equation. Phys. Rev. E 66, 056108 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  49. Yuchuan Wei, Comment on Fractional quantum mechanics and Fractional Schrödinger equation Phys. Rev. E. 93, 066103

  50. S. Selcuk, Bayin; Definition of the riesz derivative and its application to space fractional quantum mechanics. J. Math. Phys. 57, 123501 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  51. Y. Luchko, Fractional wave equation and damped waves. J. Math. Phys. 54, 031505 (2013)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  52. Y. Luchko, Fractional Schrödinger equation for a particle moving in a potential well. J. Math. Phys. 54, 012111 (2013)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  53. I. Guedes, Solution of the Schrödinger equation for the time-dependent linear potential. Phys. Rev. A 63, 034102 (2001)

    Article  ADS  Google Scholar 

  54. T. Sandev, I. Petreska, E.K.J. Lenzi, Time-dependent Schrödinger-like equation with nonlocal term. Math. Phys. 55, 092105 (2014)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  55. A.R. Plastino, C. Tsallis, Nonlinear Schroedinger equation in the presence of uniform acceleration. J. Math. Phys. 54, 041505 (2013)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  56. Y. Zhang, X. Liu, M.R. Belić, W. Zhong, Y. Zhang, M. Xiao, Propagation dynamics of a light beam in a fractional Schrödinger equation. Phys. Rev. Lett. 115, 180403 (2015)

    Article  ADS  Google Scholar 

  57. Y. Zhang, H. Zhong, M.R. Belić, N. Ahmed, Y. Zhang, M. Xiao, Diffraction-free beams in fractional Schrödinger equation. Sci. Rep. 6, 23645 (2016)

    Article  ADS  Google Scholar 

  58. Y Zhang, H Zhong, M.R Belić, Y Zhu, W Zhong, Y Zhang, D.N Christodoulides, M Xiao, PT symmetry in a fractional Schrödinger equation, laser photonics Rev. (2016). https://doi.org/10.1002/lpor.201600037

  59. S. Longhi, Fractional Schrödinger equation in optics. Opt. Lett. 40, 1117 (2015)

    Article  ADS  Google Scholar 

  60. A. Liemert, A. Kienle, Fractional Schrödinger equation in the presence of the linear potential. Mathematics 4(2), 31 (2016)

    Article  MATH  Google Scholar 

  61. Altybay A, Ruzhansky M, Sebih E.M Tokmagambetov N, Fractional Schrödinger equation with singular potentials of higher order. Reports on Mathematical Physics. 87(1), 129 (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rijuparna Chakraborty.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, R., Ghosh, A. & Chakraborty, A.K. A review on propagation-invariant, quasi-propagation-invariant beams and coordinate axicons. J Opt 52, 2382–2394 (2023). https://doi.org/10.1007/s12596-022-01071-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-022-01071-z

Keywords

Navigation