Skip to main content

Advertisement

Log in

Assessing the predictability of different kinds of models in estimating impacts of climatic factors on food grain availability in India

  • Application Article
  • Published:
OPSEARCH Aims and scope Submit manuscript

Abstract

The study explored the relationship of the climatic predictor variables such as seasonal temperature and rainfall pattern and non-climatic variable such as area under cultivation with the predictand per capita food grain production. We applied a linear method “Generalized Linear Model” and two non-linear methods “Multivariate Adaptive Regression Spline” and “Generalized Additive Model” to Indian data and assessed the data on basis of their performance in predicting food grain production. It was found that an adaptive version of generalized additive model has yielded the lowest predictive error in terms of lower root mean squared error. Better predictability of food grain production based on climatic factors may necessarily help to anticipate the nation’s food grain availability. The forecasts would facilitate scientists, farmers, policy makers, business organizations and the government to formulate appropriate adaptable strategies to cope with the climatic variability influence on food availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Allen, P.G.: Economic forecasting in agriculture. Int. J. Forecast. 10(1), 81–135 (1994)

    Article  Google Scholar 

  2. Armstrong, J.S.: Long-range forecasting, p. 35. Wiley, New York (1985)

    Google Scholar 

  3. Attri, S.D., Rathore, L.S.: Simulation of impact of projected climate change on wheat in India. Int. J. Climatol. 23(6), 693–705 (2003)

    Article  Google Scholar 

  4. Attri, S.D., Rathore Andrianasolo, F.N., Casadebaig, P., Maza, E., Champolivier, L., Maury, P., Debaeke, P.: Prediction of sunflower grain oil concentration as a function of variety, crop management and environment using statistical models. Eur. J. Agron. 54, 84–96 (2014)

    Article  Google Scholar 

  5. Bandara, J.S., Cai, Y.: The impact of climate change on food crop productivity, food prices and food security in South Asia. Econ. Anal. Policy 44(4), 451–465 (2014)

    Article  Google Scholar 

  6. Basso, B., Hyndman, D.W., Kendall, A.D., Grace, P.R., Robertson, G.P.: Can impacts of climate change and agricultural adaptation strategies be accurately quantified if crop models are annually re-initialized? PLoS ONE 10(6), e0127333 (2015)

    Article  Google Scholar 

  7. Borodin, V., Bourtembourg, J., Hnaien, F., Labadie, N.: Predictive modelling with panel data and multivariate adaptive regression splines: case of farmers crop delivery for a harvest season ahead. Stoch. Environ. Res. Risk Assess. 30(1), 309–325 (2016)

    Article  Google Scholar 

  8. Burnham KP, Anderson DR (2002) Information and likelihood theory: a basis for model selection and inference. Model selection and multimodel inference: a practical information-theoretic approach vol 2, pp 49–97

  9. Central Statistical Organization (1998) Compendium of Environment Statistics. Central Statistical Organization, Department of Statistics, Ministry of Planning and Programme Implementation, Government of India: New Delhi

  10. Chahbi, A., Zribi, M., Lili-Chabaane, Z., Duchemin, B., Shabou, M., Mougenot, B., Boulet, G.: Estimation of the dynamics and yields of cereals in a semi-arid area using remote sensing and the SAFY growth model. Int. J. Remote Sens. 35(3), 1004–1028 (2014)

    Article  Google Scholar 

  11. d’Orgeval, T., Boulanger, J.P., Capalbo, M.J., Guevara, E., Penalba, O., Meira, S.: Yield estimation and sowing date optimization based on seasonal climate information in the three CLARIS sites. Clim. Change 98(3–4), 565–580 (2010)

    Article  Google Scholar 

  12. Dai A (2010) Climate Change: Drought may threaten much of globe within decades. University Corporation for Atmospheric Research October, 19, 2010

  13. De Andrés, J., Lorca, P., de Cos Juez, F.J., Sánchez-Lasheras, F.: Bankruptcy forecasting: a hybrid approach using Fuzzy c-means clustering and Multivariate Adaptive Regression Splines (MARS). Expert Syst. Appl. 38(3), 1866–1875 (2011)

    Article  Google Scholar 

  14. Directorate of Economics and Statistics (2002) Agricultural Statistics at a Glance. Directorate of Economics and Statistics, Department of Agriculture and Cooperation, Ministry of Agriculture, Government of India: New Delhi

  15. Dong, W., Deng, A., Zhang, B., Tian, Y., Chen, J., Yang, F., Zhang, W.J.: An experimental study on the effects of different diurnal warming regimes on single cropping rice with Free Air Temperature Increased (FATI) facility. Acta Ecologia Sinica 31, 2169–2177 (2011)

    Google Scholar 

  16. Fenni M (2013) Impacts of climate change on cereal production in the setif high plains (North-East of Algeria). In Causes, Impacts and Solutions to Global Warming, pp. 225–231. Springer, New York

  17. Friedman JH (1991) Multivariate adaptive regression splines. The annals of statistics pp 1–67

  18. Guisan, A., Zimmermann, E.: Predictive habitat distribution models in ecology. Ecol. Model. 135, 147–186 (2000)

    Article  Google Scholar 

  19. Hastenrath, S.: Tropical climate prediction: a progress report, 1985–1990. Bull. Am. Meteor. Soc. 71(6), 819–825 (1990)

    Article  Google Scholar 

  20. Hastie, T., Tibshirani, R.: Generalized Additive Models, Monographs on Statistics and Applied Probability, vol. 43. Chapman and Hall, New York (1990)

    Google Scholar 

  21. Hastie T, Friedman J, Tibshirani R (2001) Additive models, trees, and related methods. In: The Elements of Statistical Learning, pp. 257–298. Springer, New York

  22. Hundal SS (2007) Climatic variability and its impact on cereal productivity in Indian Punjab. Current Science (00113891), 92(4)

  23. Imura, H., Toyoda, T., Chen, J.: An empirical analysis and forecasting of grain production in China. J. Glob. Environ. Eng. 5, 37–55 (1999)

    Google Scholar 

  24. Jia, Y., Shen, S., Niu, C., Qiu, Y., Wang, H., Liu, Y.: Coupling crop growth and hydrologic models to predict crop yield with spatial analysis technologies. J. Appl. Remote Sens. 5(1), 053537 (2011)

    Article  Google Scholar 

  25. Ju, W., Gao, P., Zhou, Y., Chen, J.M., Chen, S., Li, X.: Prediction of summer grain crop yield with a process-based ecosystem model and remote sensing data for the northern area of the Jiangsu Province, China. Int. J. Remote Sens. 31(6), 1573–1587 (2010)

    Article  Google Scholar 

  26. Krishna Kumar, K., Rupa Kumar, K., Ashrit, R.G., Deshpande, N.R., Hansen, J.W.: Climate impacts on Indian agriculture. Int. J. Climatol. 24(11), 1375–1393 (2004)

    Article  Google Scholar 

  27. Kumar A, Sharma P, (2013) Impact of climate change variation on agricultural productivity and food security in rural India. Economics. Open Assessment E-Journal. Discussion Paper No. 2013-43

  28. McCullagh, P., Nelder, J.A.: Generalized linear models, vol. 37. CRC Press, Boca Raton (1989)

    Book  Google Scholar 

  29. Mooley, D.A., Parthasarathy, B., Sontakke, N.A., Munot, A.A.: Annual rain-water over India, its variability and impact on the economy. J. Climatol. 1(2), 167–186 (1981)

    Article  Google Scholar 

  30. Nelder JA, Baker RJ (1972) Generalized linear models. Encyclopedia of Statistical Sciences

  31. Nelson, G.C., Shiverly, G.E.: Modeling climate change and agriculture: an introduction. Agric. Econ. 45, 1–2 (2014)

    Article  Google Scholar 

  32. Onduru, D.D., Du Preez, C.C.: Spatial and temporal aspects of agricultural sustainability in the semi-arid tropics: a case study in Mbeere district, Eastern Kenya. Trop. Sci. 47(3), 134–148 (2007)

    Article  Google Scholar 

  33. Parry, M., Rosenzweig, C., Iglesias, A., Fischer, G., Livermore, M.: Climate change and world food security: a new assessment. Glob. Environ. Change 9, S51–S67 (1999)

    Article  Google Scholar 

  34. Patel, N.R., Yadav, K.: Monitoring spatio-temporal pattern of drought stress using integrated drought index over Bundelkhand region, India. Nat Hazards 77(2), 663–677 (2015)

    Article  Google Scholar 

  35. Patt, A., Suarez, P., Gwata, C.: Effects of seasonal climate forecasts and participatory workshops among subsistence farmers in Zimbabwe. Proc. Natl. Acad. Sci. U.S.A. 102(35), 12623–12628 (2005)

    Article  Google Scholar 

  36. R Development Core Team. (2009). R 2.9. 2

  37. Ravichandran, S., Rao, P.R., Muthuraman, P.: Modelling India’s rice production with changing climate. Int. J. Agric. Stat. Sci. 7(2), 507–510 (2011)

    Google Scholar 

  38. Revadekar, J.V., Preethi, B.: Statistical analysis of the relationship between summer monsoon precipitation extremes and foodgrain yield over India. Int. J. Climatol. 32(3), 419–429 (2012)

    Article  Google Scholar 

  39. Selvaraju, R.: Impact of El Niño–southern oscillation on Indian foodgrain production. Int. J. Climatol. 23(2), 187–206 (2003)

    Article  Google Scholar 

  40. Siderius, C., Hellegers, P.J.G.J., Mishra, A., van Ierland, E.C., Kabat, P.: Sensitivity of the agroecosystem in the Ganges basin to inter-annual rainfall variability and associated changes in land use. Int. J. Climatol. 34(10), 3066–3077 (2014)

    Article  Google Scholar 

  41. Srivastava, A., Kumar, S.N., Aggarwal, P.K.: Assessment on vulnerability of sorghum to climate change in India. Agric. Ecosyst. Environ. 138(3), 160–169 (2010)

    Article  Google Scholar 

  42. Tian, J., Liu, J., Wang, J., Li, C., Nie, H., Yu, F.: Trend analysis of temperature and precipitation extremes in major grain producing area of China. Int. J. Climatol. 37(2), 672–687 (2017). doi:10.1002/joc.4732

  43. USDA (1994) Data tables: results from USDAs 1994–1996 continuing survey of food intakes by individuals and 1994–1996 diet and health knowledge survey, December 1997. Available at: http://www.bare.usda.gov/bhnrc/foodsurvey/home.htm. Accessed July 13, 2016

  44. Vivekanandan, N., Viswanathan, K., Gupta, S.: Optimization of cropping pattern using goal programming approach. Opsearch. 46(3), 259–274 (2009)

    Article  Google Scholar 

  45. Wilmott, C.: Some comments on the evaluation of model permormance. Bull. Am. Meteorol. Soc. 63(11), 1309–1313 (1982)

    Article  Google Scholar 

  46. Wood, S., Augustin, N.: GAMs with integrated model selection using penalized regression splines and applications to environmental modeling. Ecol. Model. 157, 157–177 (2002)

    Article  Google Scholar 

  47. World Bank: Turn Down the Heat: Climate Extremes, Regional Impacts, and the Case for Resilience. World Bank, Washington (2013)

    Google Scholar 

  48. Wu, W., Fang, Q., Ge, Q., Zhou, M., Lin, Y.: CERES-Rice model-based simulations of climate change impacts on rice yields and efficacy of adaptive options in Northeast China. Crop Pasture Sci 65(12), 1267–1277 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manojit Chattopadhyay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chattopadhyay, M., Mitra, S.K. Assessing the predictability of different kinds of models in estimating impacts of climatic factors on food grain availability in India. OPSEARCH 55, 50–64 (2018). https://doi.org/10.1007/s12597-017-0314-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12597-017-0314-9

Keywords

Navigation