Skip to main content
Log in

Generation of some methods for solving interval multi-objective linear programming models

  • Theoretical Article
  • Published:
OPSEARCH Aims and scope Submit manuscript

Abstract

In this paper, we consider interval multi-objective linear programming (IMOLP) models which are very important due to deal with inaccurate data and uncertainties. The aim of this paper is to solve the IMOLP models and obtaining efficient solutions. We first extend Ecker-Kouada method in which the variables are interval, and we introduce interval version of the Ecker-Kouada method which is called I-Ecker-Kouada method. Also, we introduce interval version of Benson’s method (I-Benson) which is not a complicated method. Finally, numerical examples and comparison with other methods are employed to illustrate the advantages of our methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

Not applicable

References

  1. Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Academic Press, New York (1983)

    Google Scholar 

  2. Allahdadi, M., Mishmast Nehi, H., Ashayerinasab, H.A., Javanmard, M.: Improving the modified interval linear programming method by new techniques. Inform. Sci. 339, 224–236 (2016)

    Article  Google Scholar 

  3. Ashayerinasab, H.A., Mishmast Nehi, H., Allahdadi, M.: Solving the interval linear programming problem: A new algorithm for a general case. Expert Syst. Appl. 93(1), 39–49 (2018)

    Article  Google Scholar 

  4. Batamiz, A., Allahdadi, M.: Obtaining efficient solutions of interval multi-objective linear programming problems. Int. J. Fuzzy Syst. (2020). https://doi.org/10.1007/s40815-020-00800-5

    Article  Google Scholar 

  5. Benson, H.P.: Finding an initial efficient extreme point for a linear multiple objective program. J. Oper. Res. Soc. 32(6), 495–498 (1981)

    Article  Google Scholar 

  6. Cheng, H., Huang, W., Zhou, Q., Cai, J.: Solving fuzzy multi-objective linear programming problems using deviation degree measure and weighted max-min method. Appl. Math. Model 37, 6855–6869 (2013)

    Article  Google Scholar 

  7. Chinneck, J.W., Ramadan, K.: Linear programming with interval coefficients. J. Oper. Res. Soc. 51, 209–220 (2000)

    Article  Google Scholar 

  8. Dubey, D., Mehra, A.: A bipolar approach in fuzzy multi-objective linear programming. Fuzzy Sets Syst. 246, 127–141 (2014)

    Article  Google Scholar 

  9. Ecker, J.G., Kouada, I.A.: Finding efficient points for linear multiple objective programs. Math. Progr. 8, 375–377 (1975)

    Article  Google Scholar 

  10. Ehrgott, M.: Multicriteria Optimization. Springer, Berlin (2005)

    Google Scholar 

  11. Fan, Y., Huang, G.H.: A robust two-step method for solving interval linear pogramming problems within an environmental management context. J. Environ. Inform. 19, 1 (2012)

    Article  Google Scholar 

  12. Fiedler, M., Nedoma, J., Ramik, J., Rohn, J., Zimmermann, K.: Linear Optimization Problems with Inexact Data. Springer, Berlin (2006). https://doi.org/10.1007/0-387-32698-7

    Book  Google Scholar 

  13. Hajiagha, S.H.R., Mahdiraji, H.A., Hashemi, S.S.: Programming with interval multi-objective linear coefficients: A fuzzy set based approach. Kybernetes 42(3), 482–496 (2013)

    Article  Google Scholar 

  14. Hossein Razavi Hajiagha, S., Akrami, H., Sadat Hashemi, S.: A multi-objective programming approach to solve grey linear programming. Grey Syst. Theory Appl. 2(2), 259–271 (2012)

  15. Hladík, M.: Interval linear programming: A survey. In: Mann, Z.A. (ed.) Linear Programming, New frontiers in Theory and Applications, Chapter 2, pp. 85–120. Nova Science Publishers, New York (2012)

    Google Scholar 

  16. Hladík, M.: One necessarily efficient solutions in interval multi objective linear programming, Proceedings of the 25th Mini-EURO Conference Uncertainty and Robustness in Planning and Decision Making URPDM 2010, April 15-17, Coimbra, Portugal. 1–10 (2010)

  17. Hladík, M.: Complexity of necessary efficiency in interval linear programming and multiobjective linear programming. Optim. Lett. 6(5), 893–899 (2012)

    Article  Google Scholar 

  18. Huang, G.H., Baetz, B.W., Patry, G.G.: Grey integer programming: An application to waste management planning under uncertainty. Eur. J. Oper. Res. 83, 594–620 (1995)

    Article  Google Scholar 

  19. Huang, G.H., Moore, R.D.: Grey linear programming, its solving approach, and its application. Int. J. Syst. Sci. 24, 159–172 (1993)

    Article  Google Scholar 

  20. Inuiguchi, M.: Necessary efficiency is partitioned into Possible an Necessary optimalities IFSA World Congress and NAFIPS Annual Meeting. Canada, IFSA/NAFIPS), Edmonton, AB (2013)

  21. Inuiguchi, M., Kume, Y.: Goal programming approach for solving IMOLP problems. Eur. J. Oper. Res. 52, 345–360 (1991)

    Article  Google Scholar 

  22. Inuiguchi, M., Sakawa, M.: An achievement rate approach to linear programming problems with an interval objective function. J. Oper. Res. Soc. 48, 25–33 (1997)

    Article  Google Scholar 

  23. Inuiguchi, M., Sakawa, M.: Minimax regret solution to multi objective linear programming problems with interval objective function coefficients. Eur. J. Oper. Res. 86, 526–536 (1995)

    Article  Google Scholar 

  24. Isermann, H.: Proper efficiency and the linear vector maximization problem. Oper. Res. 22(1), 189–191 (1974)

    Article  Google Scholar 

  25. Isermann, H.: The enumeration of the set of all efficient solutions for a linear multiple objective program. J. Oper. Res. Soc. 28(3), 711–725 (1977)

    Article  Google Scholar 

  26. Li, D., Leung, Y., Wu, W.: Multiobjective interval linear programming in admissible-order vector space. Inform. Sci. 486, 1–19 (2019)

    Article  Google Scholar 

  27. Mishmastnehi, H., Ashayerinasab, H.A., Allahdadi, M.: Solving methods for interval linear programming problem: A review and an improved method. Oper. Res. (2018). https://doi.org/10.1007/s12351-018-0383-4

    Article  Google Scholar 

  28. Mangasarian, O.: Nonlinear Programming. McGraw-Hill, New York (1969)

    Google Scholar 

  29. Oliveira, C., Antunes, C.H.: Multiple objective linear programming models with interval coefficient-an illustrated overview. Eur. J. Oper. Res. 181, 1434–1463 (2007)

    Article  Google Scholar 

  30. Panchal, D., Chatterjee, P., Shukla, R.K., Choudhury, T., Tamosaitiene, J.: Integrated fuzzy AHP-codas framework for maintenance decision in urea fertilizer industry. Econ. Comput. Econ. Cybern. Stud. Res. 51(3), 179–196 (2017)

    Google Scholar 

  31. Panchal, D., Jamwal, U., Srivastava, P., Kamboj, K., Sharma, R.: Fuzzy methodology application for failure analysis of transmission system. Int. J. Math. Oper. Res. 12(2), 220–237 (2018)

    Article  Google Scholar 

  32. Panchal, D., Kumar, D.: Stochastic behaviour analysis of power generating unit in thermal power plant using fuzzy methodology. Opsearch 53(1), 16–40 (2016)

    Article  Google Scholar 

  33. Panchal, D., Kumar, D.: Integrated framework for behaviour analysis in a process plant. J. Loss Prev. Process Ind. 40, 147–161 (2016)

    Article  Google Scholar 

  34. Panchal, D., Kumar, D.: Risk analysis of compressor house unit in thermal power plant using integrated fuzzy FMEA and GRA approach. Int. J. Ind. Syst. Eng. 25(2), 228–250 (2017)

    Google Scholar 

  35. Panchal, D., Singh, A.K., Chatterjee, P., Zavadskas, E.K., Keshavarz-Ghorabaee, M.: A new fuzzy methodology-based structured framework for RAM and risk analysis. Appl. Soft Comput. 74, 242–254 (2019)

    Article  Google Scholar 

  36. Panchal, D., Srivastava, P.: Qualitative analysis of CNG dispensing system using fuzzy FMEA-GRA integrated approach. Int. J. Syst. Assur. Eng. Manag. 10(1), 44–56 (2019)

    Article  Google Scholar 

  37. Rivaz, S., Yaghoobi, M.A.: Minimax regret solution to linear programming problems with an interval objective function. Eur. J. Oper. Res. 21(3), 625–649 (2013)

    Article  Google Scholar 

  38. Rivaz, S., Yaghoobi, M.A.: Weighted sum of maximum regrets in an interval MOLP problem. Int. Trans. Oper. Res. 25(5), 1–18 (2015)

    Google Scholar 

  39. Rivaz, S., Yaghoobi, M.A., Hladík, M.: Using modified maximum regret for finding a necessarily efficient solution in an interval MOLP problem. Fuzzy Optim. Decis. Mak. 15(3), 237–253 (2016)

    Article  Google Scholar 

  40. Rohn, J.: Cheap and tight bound: The recent result by E. Hansen can be made more efficient. Interval Comput. 4, 13–21 (1993)

    Google Scholar 

  41. Rohn, J.: Forty necessary and sufficient conditions for regularity of interval matrices: A survey. Electron J. Linear Algebra 18, 500–512 (2009)

    Google Scholar 

  42. Steuer, R.E.: Multiple Criteria Optimization: Theory, Computation and Application, Wiley Series in Probability and Mathematical Statistics. Krieger, London (1986)

    Google Scholar 

  43. Tong, S.C.: Interval number, fuzzy number linear programming. Fuzzy Sets Syst. 66, 301–306 (1994)

    Article  Google Scholar 

  44. Urli, B., Nadeau, R.: An interactive method to multiobjective linear programming problems with interval coefficients. INFOR 30, 127–137 (1992)

    Google Scholar 

  45. Wang, X., Huang, G.: Violation analysis on two-step method for interval linear programming. Inform. Sci. 281, 85–96 (2014)

    Article  Google Scholar 

  46. Zhou, F., Huang, G.H., Chen, G., Guo, H.: Enhanced-interval linear programming. Eur. J. Oper. Res. 199, 323–333 (2009)

    Article  Google Scholar 

Download references

Funding

Not applicable

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Allahdadi.

Ethics declarations

Ethical approval

This is a research study and no ethical approval is required.

Consent for publication

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allahdadi, M., Batamiz, A. Generation of some methods for solving interval multi-objective linear programming models. OPSEARCH 58, 1077–1115 (2021). https://doi.org/10.1007/s12597-021-00512-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12597-021-00512-w

Keywords

Navigation