Skip to main content
Log in

Self-healing alginate–carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Polymer binder plays a pivotal role in electrochemical performance of high-capacity silicon (Si) anode that usually suffers from severe capacity fading due to enormous substantial volume change of Si during cycling. In an effort to find efficient polymer binder that could mitigate such capacity fading, alginate–carboxymethyl chitosan (Alg–C-chitosan) composite polymer was investigated as a low-cost water-soluble binder for silicon anodes in lithium-ion batteries. The electrostatic interaction between carboxylate (–COO) of Alg and protonated amines (–NH3+) of C-chitosan forms a self-healing porous scaffold structure. Synergistic effect on the enhanced porous scaffold structure and self-healing electrostatic interaction of Alg–C-chitosan binder effectively can tolerate the tremendous volume change of Si and maintain an integrated electrode structure during cycling process. The Si nanopowder electrodes with Alg–C-chitosan composite binder exhibit an excellent cycling stability, with a capacity of 750 mAh·g−1 remaining after 100th cycling. In addition, an extraordinary areal capacity of 3.76 mAh·cm−2 is achieved for Si-based anodes with Alg–C-chitosan binder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Huggins RA. Lithium alloy negative electrodes. J Power Sources. 1999;81–82(1–2):13.

    Article  Google Scholar 

  2. Wu H, Cui Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today. 2012;7(5):414.

    Article  CAS  Google Scholar 

  3. Key B, Morcrette M, Tarascon JM, Grey CP. Pair distribution function analysis and solid state NMR studies of silicon electrodes for lithium ion batteries: understanding the (de)lithiation mechanisms. J Am Chem Soc. 2010;133(3):503.

    Article  Google Scholar 

  4. Boukamp BA, Lesh GC, Huggins RA. All-solid lithium electrodes with mixed-conductor matrix. J Electrochem Soc. 1981;128(4):725.

    Article  CAS  Google Scholar 

  5. Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y. High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol. 2008;3(1):31.

    Article  CAS  Google Scholar 

  6. Szczech JR, Jin S. Nanostructured silicon for high capacity lithium battery anodes. Energy Environ Sci. 2011;4(1):56.

    Article  CAS  Google Scholar 

  7. Liu XH, Zhong L, Huang S, Mao SX, Zhu T, Huang JY. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano. 2012;6(2):1522.

    Article  CAS  Google Scholar 

  8. Jung DS, Hwang TH, Park SB, Choi JW. Spray drying method for large-scale and high-performance silicon negative electrodes in Li-ion batteries. Nano Lett. 2013;13(5):2092.

    Article  CAS  Google Scholar 

  9. Wu H, Zheng G, Liu N, Carney TJ, Yang Y, Cui Y. Engineering empty space between Si nanoparticles for lithium-ion battery anodes. Nano Lett. 2012;12(2):904.

    Article  CAS  Google Scholar 

  10. Li X, Cho JH, Li N, Zhang Y, Williams D, Dayeh SA, Picraux ST. Carbon nanotube-enhanced growth of silicon nanowires as an anode for high-performance lithium-ion batteries. Adv Energy Mater. 2012;2(1):87.

    Article  CAS  Google Scholar 

  11. Fan Y, Zhang Q, Xiao Q, Wang X, Huang K. High performance lithium ion battery anodes based on carbon nanotube-silicon core-shell nanowires with controlled morphology. Carbon. 2013;59(7):264.

    Article  CAS  Google Scholar 

  12. Liu N, Lu Z, Zhao J, Matthew MT, Lee HW, Zhao T, Cui Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat Nanotechnol. 2014;9(3):187.

    Article  CAS  Google Scholar 

  13. Komaba S, Shimomura K, Yabuuchi N, Ozeki T, Yui H, Konno K. Study on polymer binders for high-capacity SiO negative electrode of Li-ion batteries. J Phys Chem C. 2011;115(27):13487.

    Article  CAS  Google Scholar 

  14. Munao D, Van Erven JWM, Valvo M, Garcia-Tamayo E, Kelder EM. Role of the binder on the failure mechanism of Si nano-composite electrodes for Li-ion batteries. J Power Sources. 2011;196(16):6695.

    Article  CAS  Google Scholar 

  15. Li J, Lewis RB, Dahn JR. Sodium carboxymethyl cellulose a potential binder for Si negative electrodes for Li-ion batteries. Electrochem Solid State Lett. 2007;10(2):A17.

    Article  CAS  Google Scholar 

  16. Yue L, Zhang L, Zhong H. Carboxymethyl chitosan: a new water soluble binder for Si anode of Li-ion batteries. J Power Sources. 2014;247(3):327.

    Article  CAS  Google Scholar 

  17. Magasinski A, Zdyrko B, Kovalenko I, Hertzberg B, Burtovyy R, Huebner CF, Fuller TF, Luzinov I, Yushin G. Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. ACS Appl Mater Interfaces. 2010;2(11):3004.

    Article  CAS  Google Scholar 

  18. Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicev Z, Burtovyy R, Luzinov I, Yushin G. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science. 2011;334(6052):75.

    Article  CAS  Google Scholar 

  19. Bridel JS, Azais T, Morcrette M, Tarascon JM, Larcher D. Key parameters governing the reversibility of Si/carbon/CMC electrodes for li-ion batteries. Chem Mater. 2009;22(3):1229.

    Article  Google Scholar 

  20. Hochgatterer NS, Schweiger MR, Koller S, Raimann PR, Wöhrle T, Wurm C, Winter M. Silicon/graphite composite electrodes for high-capacity anodes: influence of binder chemistry on cycling stability. Electrochem Solid State Lett. 2008;11(5):A76.

    Article  CAS  Google Scholar 

  21. Choi NS, Yew KH, Choi WU, Kim SS. Enhanced electrochemical properties of a Si-based anode using an electrochemically active polyamide imide binder. J Power Sources. 2008;177(2):590.

    Article  CAS  Google Scholar 

  22. Kim JS, Choi W, Cho KY, Byun D, Lim J, Lee JK. Effect of polyimide binder on electrochemical characteristics of surface-modified silicon anode for lithium ion batteries. J Power Sources. 2013;244(4):521.

    Article  CAS  Google Scholar 

  23. Koo B, Kim H, Cho Y, Lee KT, Choi NS, Cho J. A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angew Chem Int Ed. 2012;51(35):8762.

    Article  CAS  Google Scholar 

  24. Song JX, Zhou MJ, Yi R, Xu T, Gordin ML, Tang DH, Yu ZX, Regula M, Wang DH. Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries. Adv Funct Mater. 2014;24(37):5904.

    Article  CAS  Google Scholar 

  25. Yim T, Choi SJ, Jo YN, Kim TH, Kim KJ, Jeong G, Kim YJ. Effect of binder properties on electrochemical performance for silicon-graphite anode: method and application of binder screening. Electrochem Acta. 2014;136(8):112.

    Article  CAS  Google Scholar 

  26. Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci. 2012;37(1):106.

    Article  CAS  Google Scholar 

  27. Rinaudo M. Chitin and chitosan: properties and applications. Progr Polym Sci. 2006;31(7):603.

    Article  CAS  Google Scholar 

  28. Baruch L, Machluf M. Alginate-chitosan complex coacervation for cell encapsulation: effect on mechanical properties and on long-term viability. Biopolymers. 2006;82(6):570.

    Article  CAS  Google Scholar 

  29. Li S, Wang XT, Zhang XB, Yang RJ, Zhang HZ, Zhu LZ, Hou XP. Studies on alginate–chitosan microcapsules and renal arterial embolization in rabbits. J Control Release. 2002;84(3):87.

    Article  CAS  Google Scholar 

  30. George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J Control Released. 2006;114(1):1.

    Article  CAS  Google Scholar 

  31. Li Z, Ramay HR, Hauch KD, Xiao D, Zhang M. Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials. 2005;26(18):3919.

    Article  CAS  Google Scholar 

  32. Mourya VK, Inamdar NN, Tiwari A. Carboxymethyl chitosan and its applications. Adv Mater Lett. 2010;1(1):11.

    Article  CAS  Google Scholar 

  33. Sugimoto M, Morimoto M, Sashiwa H, Saimoto H, Shigemasa Y. Preparation and characterization of water-soluble chitin and chitosan derivatives. Carbohydr Polym. 1998;36(1):49.

    Article  CAS  Google Scholar 

  34. Wang Q, Du Y, Hu X, Yang J, Fan L, Feng T. Preparation of alginate/soy protein isolate blend fibers through a novel coagulating bath. J Appl Polym Sci. 2006;101(1):425.

    Article  CAS  Google Scholar 

  35. Salmon S, Hudson SM. Crystal morphology, biosynthesis, and physical assembly of cellulose, chitin, and chitosan. Rev Macromol Chem Phys C. 1997;37(2):199.

    Google Scholar 

  36. Kim JH, Lee YM. Synthesis and properties of diethylaminoethyl chitosan. Polymer. 1993;34(9):1952.

    Article  CAS  Google Scholar 

  37. Zhao H, Wang ZH, Lu P, Jiang M, Shi FF, Song XY, Zheng ZY, Zhou X, Fu YB, Guerfi A, Xiao XC, Liu Z, Vincent SB, Karim Z, Liu G. Toward practical application of functional conductive polymer binder for a high-energy lithium-ion battery design. Nano Lett. 2015;14(11):6704.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (No. 51404032) and the National High Technology Research and Development Program of China (No. 2013AA050904).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan-Yu Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, ZH., Yang, JY., Yu, B. et al. Self-healing alginate–carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries. Rare Met. 38, 832–839 (2019). https://doi.org/10.1007/s12598-016-0753-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0753-0

Keywords

Navigation