Skip to main content
Log in

CeO2–Nb2O5 photocatalysts for degradation of organic pollutants in water

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The photocatalytic properties of CeO2–Nb2O5 photocatalysts in heterogeneous photocatalysis (under ultraviolet and visible radiation) and in Fenton-like process were reported. Methylene blue dye (MB) and phenol (Ph) were used as models of pollutant molecules for these reactions, and the photocatalysts were characterized by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and thermally stimulated luminescence (TL). The results indicated that the addition of CeO2 (0.3 wt%, 1.0 wt% and 2.0 wt%) to Nb2O5 sensitized the resultant materials, increasing light absorption in the visible region. However, there is a suitable formulation of CeO2–Nb2O5 photocatalysts to improve each photocatalytic process. In heterogeneous photocatalysis, the addition of small CeO2 quantities to Nb2O5 was enough to improve the photocatalytic activity of CeO2–Nb2O5 photocatalysts (The best composition reported was CeO2 0.3 wt%.). The effectiveness of the catalyst was explained by the decrease in the number of trapping and luminescence centers in the conduction band of the material after the addition of CeO2 to Nb2O5, but a large amount of CeO2 decreased the number of trapping, luminescent and active centers to a large extent. Contrarily, in a Fenton-like process, the addition of CeO2 to Nb2O5 was favorable in all the proportions studied. (The best composition was 2.0 wt% CeO2.) In this case, the effectiveness was explained by the influence of the adsorption process (adsorption-triggered process), and the interactions between H2O2 and Ce3+ of the CeO2 in each photocatalyst thus formed surface peroxide species O22−, which induced the removal of the organic molecules under visible light.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cheng M, Zeng G, Huang D, Lai C, Xu P, Zhang C, Liu Y. Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review. Chem Eng J. 2016;284:582.

    CAS  Google Scholar 

  2. Ferraz NP, Marcos FCF, Nogueira AE, Martins AS, Asencios YJO. Hexagonal-Nb2O5/anatase-TiO2 mixtures and their applications in the removal of Methylene Blue dye under various conditions. Mater Chem Phys. 2017;198:331.

    CAS  Google Scholar 

  3. Barron MA, Haber L, Maier A, Zhao J, Dourson M. Toxicological review of phenol, EPA/635/r-02/006. In: Support of Summary Information on the Integrated Risk Information System (IRIS), Washington: EPA, 2002. 2.

  4. Chen X, Zhang Y, Zhou X, Ichimura S, Tong G, Zhou Q, Chen X, Wang W, Liang Y. Application of a novel semiconductor catalyst, CT, in degradation of aromatic pollutants in wastewater: phenol and catechol. J Nanomater. 2014. https://doi.org/10.1155/2014/524141.

    Article  Google Scholar 

  5. Choi J. Development of Visible-Light-Active Photocatalyst for Hydrogen Production and Environmental Application. Pasadena California: California Institute of Technology; 2010. 4.

    Google Scholar 

  6. Ibhadon AO, Fitzpatrick P. Heterogeneous photocatalysis: recent advances and applications. Catalysts. 2013;3(1):189.

    CAS  Google Scholar 

  7. Liu Y, Szeifert JM, Feckl JM, Mandlmeier B, Rathousky J, Hayden O, Fattakhova-Rohlfing D, Bein T. Niobium-doped titania nanoparticles: synthesis and assembly into mesoporous films and electrical conductivity. ACS Nano. 2010;4(9):5373.

    CAS  Google Scholar 

  8. Zhao Y, Eley C, Hu J, Foord JS, Ye L, He H. Shape-dependent acidity and photocatalytic activity of Nb2O5 nanocrystals with an active TT (001) surface. Angew Chem Int Ed. 2012;51(16):3846.

    CAS  Google Scholar 

  9. Khan MM, Ansari SA, Pradhan D, Ansari MO, Han DH, Lee J, Cho MHJ. Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. Mater Chem A. 2014;2(3):637.

    CAS  Google Scholar 

  10. Khan MM, Ansari SA, Pradhan D, Han DH, Lee J, Hwan CM. Defect-induced band gap narrowed CeO2 nanostructures for visible light activities. Ind Eng Chem Res. 2014;53(23):9754.

    CAS  Google Scholar 

  11. Ansari SA, Khan MM, Ansari MO, Kalathil S, Lee J, Hwan CM. Band gap engineering of CeO2 nanostructure using an electrochemically active biofilm for visible light applications. RSC Adv. 2014;4:16782.

    CAS  Google Scholar 

  12. Sato S, Nakamura R, Abe S. Visible-light sensitization of TiO2 photocatalysts by wet-method N doping. Appl Catal A. 2005;284(1–2):131.

    CAS  Google Scholar 

  13. Fajardo HV, Longo E, Probst LFD, Valentini A, Carreño NLV, Nunes MR, Maciel AP, Leite ER. Influence of rare earth doping on the structural and catalytic properties of nanostructured tin oxide. Nanoscale Res Lett. 2008;3:194.

    CAS  Google Scholar 

  14. Rangaswamy A, Sudarsanam P, Reddy BM. Rare earth metal doped CeO2–based catalytic materials for diesel soot oxidation at lower temperatures. J Rare Earths. 2015;33(11):1162.

    CAS  Google Scholar 

  15. Xie Y, Yuan C, Li X. Photosensitized and photocatalyzed degradation of azo dye using Lnn+-TiO2 sol in aqueous solution under visible light irradiation. Mater Sci Eng B. 2005;117(3):325.

    Google Scholar 

  16. Gurkan YY, Turkten N, Hatipoglu A, Cinar Z. Photocatalytic degradation of cefazolin over N-doped TiO2 under UV and sunlight irradiation: prediction of the reaction paths via conceptual DFT. Chem Eng J. 2012;184:113.

    CAS  Google Scholar 

  17. Huang Y, Wei Y, Wua J, Guo C, Wang M, Yin S, Sato T. Low temperature synthesis and photocatalytic properties of highly oriented ZnO/TiO2−xNy coupled photocatalysts. Appl Catal B. 2012;123–124:9.

    Google Scholar 

  18. Martins T, Hewer T, Freire R. Cério: propriedades catalíticas, aplicações tecnológicas e ambientais. Quím Nova. 2007;30(8):2001.

    CAS  Google Scholar 

  19. Rajendran S, Khan MM, Gracia F, Qin J, Gupta VK, Arumainathan S. Ce3+-ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite. Sci Rep. 2016;6:31641.

    CAS  Google Scholar 

  20. Khan ME, Khan MM, Cho MH. Ce3+-ion, surface oxygen vacancy, and visible light-induced photocatalytic dye degradation and photocapacitive performance of CeO2–graphene nanostructures. Sci Rep. 2017;7:5928.

    Google Scholar 

  21. Ge S, Jia H, Zhao H, Zheng Z, Zhang L. First observation of visible light photocatalytic activity of carbon modified Nb2O5 nanostructures. J Mater Chem. 2010;20(15):3052.

    CAS  Google Scholar 

  22. Da Silva GTST, Nogueira AE, Oliveira JA, Torres JA, Lopes OF, Ribeiro C. Acidic surface niobium pentoxide is catalytic active for CO2 photoreduction. Appl Catal B. 2019;242:349.

    Google Scholar 

  23. Li L, Deng J, Yu R, Chen J, Wang Z, Xing XJ. Niobium pentoxide hollow nanospheres with enhanced visible light photocatalytic activity. J Mater Chem A. 2013;1(38):11894.

    CAS  Google Scholar 

  24. Rodrigues LA, Pinto da Silva MLC. Adsorção de íons fosfato em óxido de nióbio hidratado. Quim Nova. 2009;32(5):1206.

    CAS  Google Scholar 

  25. Umpierres SC, Prola LDT, Adebayo MA, Lima EC, Dos Reis GS, Kunzler DDF, Dotto GL, Arenas LT, Benvenutti EV. Mesoporous Nb2O5/SiO2 material obtained by sol–gel method and applied as adsorbent of crystal violet dye. Environ Technol. 2017;38(5):566.

    CAS  Google Scholar 

  26. Stosic D, Bennici S, Raki V, Auroux A. CeO2–Nb2O5 mixed oxide catalysts: preparation, characterization and catalytic activity in fructose dehydration reaction. Catal Today. 2012;192(1):160.

    CAS  Google Scholar 

  27. Zhang Z. Study of the double layer CeO2/Nb2O5 thin film. J Vac Sci Technol A. 2000;18:2928.

    CAS  Google Scholar 

  28. Jardim EO, Rico-Francés S, Abdelouahab-Reddam Z, Coloma F, Silvestre-Albero J, Sepúlveda-Escribano A, Ramos-Fernandez EV. High performance of Cu/CeO2–Nb2O5 catalysts for preferential CO oxidation and total combustion of toluene. Appl Catal A. 2015;502:129.

    CAS  Google Scholar 

  29. Jardim EO, Rico-Francés S, Coloma F, Anderson JA, Ramos-Fernandez EV, Silvestre-Albero J, Sepúlveda-Escribano A. Preferential oxidation of CO in excess of H2 on Pt/CeO2–Nb2O5 catalysts. Appl Catal A. 2015;492:201.

    CAS  Google Scholar 

  30. Pereira RR, Thomaz AF, Ferrier A, Goldner P, Gonçalves RR. Nanostructured rare earth doped Nb2O5: structural, optical properties and their correlation with photonic applications. J Lumin. 2016;170:707.

    CAS  Google Scholar 

  31. Wood DL, Tauc J. Weak absorption tails in amorphous semiconductors. Phys Rev B. 1972;5(8):3144.

    Google Scholar 

  32. American Public Health Association. Method D 5530, Standard Methods for the Examination of Water and Wastewater. 17th ed. Washington: American Public Health Association; 1989. 164.

    Google Scholar 

  33. U.S. Environmental Protection Agency. Method 604, Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater. Part VIII, 40 CFR Part 136. Appendix A. Washington: EPA. 1984. 1.

  34. Sun X, Zhang H, Wei J, Yu Q, Yang P, Zhang F. Preparation of point-line Bi2WO6@TiO2 nanowires composite photocatalysts with enhanced UV/visible-light-driven photocatalytic activity. Mater Sci Semicond Process. 2016;45:51.

    CAS  Google Scholar 

  35. Zhu CS, Zhang L, Jiang B, Zheng JT, Hu P, Li SJ, Wu MB, Wu WT. Fabrication of Z-scheme Ag3PO4/MoS2 composites with enhanced photocatalytic activity and stability for organic pollutant degradation. Appl Surf Sci. 2016;377:99.

    CAS  Google Scholar 

  36. Xu D, Cheng B, Cao S, Yu J. Enhanced photocatalytic activity and stability of Z-scheme Ag2CrO4-GO composite photocatalysts for organic pollutant degradation. Appl Catal B. 2015;164:380.

    CAS  Google Scholar 

  37. Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A. 1976;32:751.

    Google Scholar 

  38. Pauling L. The Nature of the Chemical Bond. Ithaca: Cornell University Press; 1961. 450.

    Google Scholar 

  39. Daskalaki VM, Dou MA, Puma GL, Kondarides DI, Lianos P. Solar light-responsive Pt/CdS/TiO2 photocatalysts for hydrogen production and simultaneous degradation of inorganic or organic sacrificial agents in wastewater. Environ Sci Technol. 2010;44(19):7200.

    CAS  Google Scholar 

  40. Chen X, Yu T, Fan X, Zhang H, Li Z, Ye J, Zou Z. Enhanced activity of mesoporous Nb2O5 for photocatalytic hydrogen production. Appl Surf Sci. 2007;253(20):8500.

    CAS  Google Scholar 

  41. Ge S, Jia H, Zhao H, Zheng Z, Zhang L. First observation of visible light photocatalytic activity of carbon modified Nb2O5 nanostructures. J Mater Chem. 2010;20(15):3052.

    CAS  Google Scholar 

  42. Santos CCL, Síntese e aplicação biotecnológica de nanoestruturas de óxido de cério (IV), obtidas pelo método hidrotermal de micro-ondas, João Pessoa, Brazil: Universidade Federal da Paraiba, 2013. 10.

  43. Danciu V, Popa M, Indrea E, Pascuta P, Cosoveanu V, Popescu I. Fe, Ce and Cu influence on morpho-structural and photocatalytic properties of TiO2 aerogels. Rev Roum Chim. 2010;55(7):369.

    Google Scholar 

  44. Jing LQ, Qu YC, Wang BQ, Li SD, Jiang BJ, Yang LB, Fu W, Fu HG, Sun JZ. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol Energy Mater Sol Cells. 2006;90(12):1773.

    CAS  Google Scholar 

  45. Gonçalves KA, Tatumi SH, Rocca RR, Ventieri A. The use of TL and OSL emissions of 3Al2O3–2SiO2:Er, Yb phosphors for dose rate estimation. J Radioanal Nucl Chem. 2015;306(3):775.

    Google Scholar 

  46. Guidelli EJ. Luminiscência Opticamente Estimulada em condições de Ressonância Plamônica. São Paulo: Universidade de São Paulo; 2015. 50.

    Google Scholar 

  47. Lousada CM, Johannes-Johansson A, Brinck T, Jonsson M. Mechanism of H2O2 decomposition on transition metal oxide surfaces. J Phys Chem C. 2012;116(17):9533.

    CAS  Google Scholar 

  48. Gonzalez G, Saraiva SM, Aliaga W. Isoelectric points for niobium and vanadium pentoxides. J Dispers Sci Technol. 1994;15(2):249.

    Google Scholar 

  49. Ziolek M, Sobczak I, Decyk P, Wolski L. The ability of Nb2O5 and Ta2O5 to generate active oxygen in contact with hydrogen peroxide. Catal Commun. 2013;37:85.

    CAS  Google Scholar 

  50. Ziolek M, Sobczak I, Decyk P, Sobanska K, Pietrzyk P, Sojka Z. Search for reactive intermediates in catalytic oxidation with hydrogen peroxide over amorphous niobium (V) and tantalum (V) oxides. Appl Catal B. 2015;164:288.

    CAS  Google Scholar 

  51. Chen F, Shen X, Wang Y, Zhang J. CeO2/H2O2 system catalytic oxidation mechanism study via a kinetics investigation to the degradation of acid orange 7. Appl Catal B. 2012;121–122:223.

    Google Scholar 

  52. Cai WD, Chen F, Shen XX, Chen LJ, Zhang JL. Enhanced catalytic degradation of AO7 in the CeO2–H2O2 system with Fe3+ doping. Appl Catal B. 2010;101:160.

    CAS  Google Scholar 

  53. Ji PF, Wang LZ, Chen F, Zhang JL. Ce3+ Centric organic pollutant elimination by CeO2 in the presence of H2O2. ChemCatChem. 2010;2:1552.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank to the São Paulo Research Foundation (FAPESP) (for the financial support, Grant numbers 2014/24940-5, and 2017/01462-9), to the Brazilian National Council for Scientific Development (CNPq) for the fellowship given to Nathalia P. Ferraz, and to the Brazilian Metals and Mining Company (CBMM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvan Jesus Olortiga Asencios.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferraz, N.P., Nogueira, A.E., Marcos, F.C.F. et al. CeO2–Nb2O5 photocatalysts for degradation of organic pollutants in water. Rare Met. 39, 230–240 (2020). https://doi.org/10.1007/s12598-019-01282-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01282-7

Keywords

Navigation