Skip to main content
Log in

Tailoring thermoelectric properties of Zr0.43Hf0.57NiSn half-Heusler compound by defect engineering

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The thermoelectric transport properties of Zr0.43Hf0.57NiSn half-Heusler compounds were investigated for samples sintered with different spark plasma sintering (SPS) periods: 8, 32 and 72 min. By means of scanning transmission electron microscopy with a high-angular annular dark-field detector (STEM-HAADF), it was found that sintering time affected the defect concentration, namely the amount of Ni interstitial atoms, and created locally ordered inclusions of full-Heusler phase. The structural information, phase composition and electrical transport properties could be consistently explained by the assumption that Ni interstitials give rise to an impurity band situated about 100 meV below the bottom of the conduction band via a self-doping behavior. The impurity band was found to merge with the conduction band for the sample with intermediate SPS time. The effect was ascribed to the gradual dissolution of full-Heusler phase inclusions and production of interstitial Ni defects, which eventually vanished for the sample with the longest sintering time. It was demonstrated that the modification of the density of states near the edge of the conduction band and enhanced overall charge carrier concentration provided by defect engineering led to overall 26% increase in the thermoelectric figure of merit (ZT) with respect to the other samples.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Xie W, Weidenkaff A, Tang X, Zhang Q, Poon J, Tritt TM. Recent advances in nanostructured thermoelectric half-Heusler compounds. Nanomaterials. 2012;2(4):379.

    Article  CAS  Google Scholar 

  2. Uher C, Yang J, Hu S, Morelli D, Meisner G. Transport properties of pure and doped MNiSn (M = Zr, Hf). Phys Rev B. 1999;59(13):8615.

    Article  CAS  Google Scholar 

  3. Shen Q, Chen L, Goto T, Hirai T, Yang J, Meisner G, Uher C. Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds. Appl Phys Lett. 2001;79(25):4165.

    Article  CAS  Google Scholar 

  4. Gałązka K, Populoh S, Xie W, Yoon S, Saucke G, Hulliger J, Weidenkaff A. Improved thermoelectric performance of (Zr0.3Hf0.7)NiSn half-Heusler compounds by Ta substitution. J Appl Phys. 2014;115(18):183704.

    Article  CAS  Google Scholar 

  5. Ogut S, Rabe K. Band gap and stability in the ternary intermetallic compounds NiSnM (M = Ti, Zr, Hf): a first-principles study. Phys Rev B. 1995;51(16):10443.

    Article  CAS  Google Scholar 

  6. Colinet C, Jund P, Tedenac J. NiTiSn a material of technological interest: ab initio calculations of phase stability and defects. Intermetallics. 2014;46:103.

    Article  CAS  Google Scholar 

  7. Miyazaki H, Nakano T, Inukai M, Soda K, Izumi Y, Muro T, Kim J, Takata M, Matsunami M, Kimura S, Nishino Y. Electronic and local crystal structures of the ZrNiSn Half-Heusler thermoelectric material. Mater Trans. 2014;55(8):1209.

    Article  CAS  Google Scholar 

  8. Do D, Mahanti S, Pulikkotil J. Electronic structure of Zr–Ni–Sn systems: role of clustering and nanostructures in half-Heusler and Heusler limits. J Phys Condens Mater. 2014;26(27):275501.

    Article  CAS  Google Scholar 

  9. Chai Y, Kimura Y. Nanosized precipitates in half-Heusler TiNiSn alloy. Appl Phys Lett. 2012;100(3):033114.

    Article  CAS  Google Scholar 

  10. Chai Y, Kimura Y. Microstructure evolution of nanoprecipitates in half-Heusler TiNiSn alloys. Acta Mater. 2013;61(18):6684.

    Article  CAS  Google Scholar 

  11. Chai Y, Yoshioka K, Kimura Y. Intrinsic point defects in thermoelectric half-Heusler alloys. Scr Mater. 2014;83:13.

    Article  CAS  Google Scholar 

  12. Sahoo P, Liu Y, Makongo J, Su X, Kim S, Takas N, Chi H, Uher C, Pan X, Poudeu P. Enhancing thermopower and hole mobility in bulk p-type half-Heuslers using full-Heusler nanostructures. Nanoscale. 2013;5(19):9419.

    Article  CAS  Google Scholar 

  13. Xie H, Mi J, Hu L, Lock N, Chirstensen M, Fu C, Iversen B, Zhao X, Zhu T. Interrelation between atomic switching disorder and thermoelectric properties of ZrNiSn half-Heusler compounds. CrystEngComm. 2012;14(13):4467.

    Article  CAS  Google Scholar 

  14. Morimura T, Hasaka M. ALCHEMI for coexistent Heusler and half-Heusler phases in TiNi1.5Sn. Ultramicroscopy. 2006;106(7):553.

    Article  CAS  Google Scholar 

  15. Xie H, Wang H, Fu C, Liu Y, Snyder G, Zhao X, Zhu T. The intrinsic disorder related alloy scattering in ZrNiSn half-Heusler thermoelectric materials. Sci Rep. 2014;4:6888.

    Article  CAS  Google Scholar 

  16. Zhou M, Chen L, Feng C, Wang D, Li J. Moderate-temperature thermoelectric properties of TiCoSb-based half-Heusler compounds Ti1−xTaxCoSb. J Appl Phys. 2007;101(11):113714.

    Article  CAS  Google Scholar 

  17. Le Bail A, Duroy H, Fourquet J. Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Mater Res Bull. 1988;23(3):447.

    Article  Google Scholar 

  18. Rodríguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys B. 1993;192(1–2):55.

    Article  Google Scholar 

  19. Stokes A, Wilson A. The diffraction of X rays by distorted crystal aggregates—I. Proc Phys Soc Lond. 1944;56(3):174.

    Article  CAS  Google Scholar 

  20. Thompson P, Cox D, Hastings J. Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3. J Appl Crystallogr. 1987;20(2):79.

    Article  CAS  Google Scholar 

  21. Schwall M, Balke B. Niobium substitution in Zr0.5Hf0.5NiSn based Heusler compounds for high power factors. Appl Phys Lett. 2011;98(4):042106.

    Article  CAS  Google Scholar 

  22. Shutoh N, Sakurada S. Thermoelectric properties of the Tix(Zr0.5Hf0.5)1−xNiSn half-Heusler compounds. J Alloy Compd. 2005;389(1):204.

    Article  CAS  Google Scholar 

  23. Hohl H, Ramirez A, Kaefer W, Fess K, Thurner C, Kloc C, Bucher E. A new class of materials with promising thermoelectric properties: MNiSn (M = Ti, Zr, Hf). MRS Proc. 1997;478:109.

    Article  CAS  Google Scholar 

  24. Jeitschko W. Transition metal stannides with MgAgAs and MnCu2Al type structure. Met Trans. 1970;1(11):3159.

    CAS  Google Scholar 

  25. Yu C, Xie H, Fu C, Zhu T, Zhao X. High performance half-Heusler thermoelectric materials with refined grains and nanoscale precipitates. J Mater Res. 2012;27(19):2457.

    Article  CAS  Google Scholar 

  26. Fritzsche H. Resistivity and hall coefficient of antimony-doped germanium at low temperatures. J Phys Chem Solids. 1958;6(1):69.

    Article  CAS  Google Scholar 

  27. Bergman DJ. Electrical transport properties near a classical conductivity or percolation threshold. Phys A. 1989;157(1):72.

    Article  CAS  Google Scholar 

  28. Dai U, Palevski A, Deutscher G. Hall effect in a three-dimensional percolation system. Phys Rev B. 1987;36(1):790.

    Article  CAS  Google Scholar 

  29. Cook B, Meisner G, Yang J, Uher C. High temperature thermoelectric properties of MNiSn (M = Zr, Hf). In: Proceedings of eighteenth international conference on thermoelectrics, Baltimore, IEEE; 1999, 64.

  30. Schmitt J, Gibbs Z, Snyder G, Felser C. Resolving the true band gap of ZrNiSn half-Heusler thermoelectric materials. Mater Horiz. 2015;2(1):68.

    Article  CAS  Google Scholar 

  31. Zou D, Xie S, Liu Y, Lin J, Li J. Electronic structure and thermoelectric properties of half-Heusler Zr0.5Hf0.5NiSn by first-principles calculations. J Appl Phys. 2013;113(19):193705.

    Article  CAS  Google Scholar 

  32. Graf T, Felser C, Parkin S. Simple rules for the understanding of Heusler compounds. Prog Solid State Chem. 2011;39(1):1.

    Article  CAS  Google Scholar 

  33. Qiu P, Yang J, Huang X, Chen X, Chen L. Effect of antisite defects on band structure and thermoelectric performance of ZrNiSn half-Heusler alloys. Appl Phys Lett. 2010;96(15):152105.

    Article  CAS  Google Scholar 

  34. Blakemore J. Semiconductor statistics. New York: Dover Publications, Inc.; 1987. 1.

    Google Scholar 

  35. Hazama H, Asahi R, Matsubara M, Takeuchi T. Study of electronic structure and defect formation in Ti1−xNi1+xSn Half-Heusler alloys. J Electro Mater. 2010;39(9):1549.

    Article  CAS  Google Scholar 

  36. Aliev F, Brandt N, Moshchalkov V, Kozyrkov V, Skolozdra R, Belogorokhov A. Gap at the Fermi level in the intermetallic vacancy system RBiSn(R = Ti, Zr, Hf). Z Phys B Condens Matter. 1989;75(2):167.

    Article  CAS  Google Scholar 

  37. Arushanov E, Kaefer W, Fess K, Kloc C, Friemelt K, Bucher E. Transport properties of n-ZrNiSn single crystals. Phys Status Solidi A. 2000;177(2):511.

    Article  CAS  Google Scholar 

  38. Conwell E. Impurity band conduction in germanium and silicon. Phys Rev. 1956;103(1):51.

    Article  CAS  Google Scholar 

  39. Hung C. Theory of resistivity and hall effect at very low temperatures. Phys Rev. 1950;79(4):727.

    Article  CAS  Google Scholar 

  40. Putley EH. The Hall effect and related phenomena. London: Butterworth & Co.; 1960. 1.

    Google Scholar 

  41. Simonson J, Wu D, Xie W, Tritt T, Poon S. Introduction of resonant states and enhancement of thermoelectric properties in half-Heusler alloys. Phys Rev B. 2011;83(23):235211.

    Article  CAS  Google Scholar 

  42. Xie H, Wang H, Pei Y, Fu C, Liu X, Snyder G, Zhao X, Zhu T. Beneficial contribution of alloy disorder to electron and phonon transport in half-heusler thermoelectric materials. Adv Funct Mater. 2013;23(41):5123.

    Article  CAS  Google Scholar 

  43. Mott N, Twose W. The theory of impurity conduction. Adv Phys. 1961;10(38):107.

    Article  CAS  Google Scholar 

  44. Matthiessen A, Vogt C. On the influence of temperature on the electric conducting-power of alloy. Philos Trans R Soc. 1864;154:167.

    Article  Google Scholar 

  45. Nolas G, Sharp J, Goldsmid H. Thermoelectrics: basic principles and new materials developments. Berlin: Springer; 2001. 1.

    Book  Google Scholar 

  46. Conwell E, Weisskopf V. Theory of impurity scattering in semiconductors. Phys Rev. 1950;77(3):388.

    Article  Google Scholar 

  47. Fritzsche H, Lark-Horovitz K. Electrical properties of p-type indium antimonide at low temperatures. Phys Rev. 1955;99(2):400.

    Article  CAS  Google Scholar 

  48. Ioffe A. Fizika Poluprovodnikov. Moscow: Publishing House of USSR; 1957. 1.

    Google Scholar 

  49. Goldsmid H, Sharp J. Estimation of the thermal band gap of a semiconductor from seebeck measurements. J Electro Mater. 1999;28(7):869.

    Article  CAS  Google Scholar 

  50. Tritt T. Thermal conductivity: theory, properties, and applications. New York: Kluwer Academic/Plenum Publishers; 2004. 1.

    Book  Google Scholar 

Download references

Acknowledgments

This work was financially supported by German Research Foundation Priority Programme 1386 (No.WE 2803/2-2) and the European Union under Marie Skłodowska-Curie Program (W. J. X.). We also gratefully acknowledge the Laboratorio de Microscopias Avanzadas at Instituto de Nanociencia de Aragon, Universidad de Zaragoza, where the aberration-corrected TEM studies were conducted, and thank Prof. Jürg Hulliger for their critical discussion and comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenjie Xie or Anke Weidenkaff.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 263 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gałązka, K., Xie, W., Populoh, S. et al. Tailoring thermoelectric properties of Zr0.43Hf0.57NiSn half-Heusler compound by defect engineering. Rare Met. 39, 659–670 (2020). https://doi.org/10.1007/s12598-020-01392-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01392-7

Keywords

Navigation