Skip to main content
Log in

Nanosized Rh grown on single-walled carbon nanohorns for efficient methanol oxidation reaction

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Reasonable design and controllable synthesis of non-Pt catalysts with high methanol oxidation activity are regarded as a valid way to promote the large-scale commercial applications of direct methanol fuel cells (DMFCs). Herein, we develop a convenient and cost-effective approach to the successful fabrication of nanosized Rh grown on single-walled carbon nanohorns (Rh/SWCNH) as anode catalysts for DMFCs. The unique architectural configuration endows the as-obtained hybrids with a series of intriguing structural merits, including large specific surface areas, abundant opened holes, optimized electronic structures, homogeneous Rh dispersion, and good electrical conductivity. As a consequence, the resulting Rh/SWCNH catalysts exhibit exceptional electrocatalytic properties in terms of a large electrochemically active surface area of 102.5 m2·g−1, a high mass activity of 784.0 mA·mg−1, as well as reliable long-term durability towards the methanol oxidation reaction in alkaline media, thereby holding great potential as alternatives for commercial Pt/carbon black and Pd/carbon black catalysts.

Graphic abstract

摘要

合理设计并可控合成具有高甲醇氧化活性的非铂催化剂是推动直接甲醇燃料电池大规模商业化应用的有效途径之一。在本文中, 我们开发了一种便捷经济的方法成功制备了生长在单壁碳纳米角上的纳米级金属铑 (Rh/SWCNH), 并将其用作直接甲醇燃料电池阳极催化剂。独特的构造赋予了该杂化催化剂一系列有趣的结构优点, 包括大的比表面积, 丰富的开放孔道, 优化的电子结构, 均一的铑分散性和良好的导电性等。因此, 最终得到的Rh/SWCNH催化剂在碱性介质中表现出优异的甲醇氧化电催化性能, 其电化学活性表面积高达102.5 m2 g−1, 质量活性可达784.0 mA mg−1, 并具有可靠的长期耐久性, 在替代商用铂/炭黑及钯/炭黑催化剂方面具有巨大的潜力。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature. 2012;488(7411):294.

    Article  CAS  Google Scholar 

  2. Huang HJ, Yan MM, Yang CZ, He HY, Jiang QG, Yang L, Lu ZY, Sun ZQ, Xu XT, Bando Y, Yamauchi Y. Graphene nanoarchitectonics: recent advances in graphene-based electrocatalysts for hydrogen evolution reaction. Adv Mater. 2019;31(48):1903415.

    Article  CAS  Google Scholar 

  3. Xiao WP, Bukhvalov D, Zou ZY, Zhang L, Lin ZX, Yang XF. Unveiling the origin of the high catalytic activity of ultrathin 1T/2H MoSe2 nanosheets for the hydrogen evolution reaction: a combined experimental and theoretical study. Chemsuschem. 2019;12(22):5015.

    Article  CAS  Google Scholar 

  4. Xiao WP, Zhang L, Bukhvalov D, Chen ZP, Zou ZY, Shang L, Yang XF, Yan DQ, Han FY, Zhang TR. Hierarchical ultrathin carbon encapsulating transition metal doped MoP electrocatalysts for efficient and pH-universal hydrogen evolution reaction. Nano Energy. 2020;70:104445.

    Article  CAS  Google Scholar 

  5. Huang HJ, Wei YJ, Yang Y, Yan MM, He HY, Jiang QG, Yang XF, Zhu JX. Controllable synthesis of grain boundary-enriched Pt nanoworms decorated on graphitic carbon nanosheets for ultrahigh methanol oxidation catalytic activity. J Energy Chem. 2021;57:601.

    Article  Google Scholar 

  6. Yang CZ, Huang HJ, He HY, Yang L, Jiang QG, Li WH. Recent advances in MXene-based nanoarchitectures as electrode materials for future energy generation and conversion applications. Coordin Chem Rev. 2021;435:213806.

    Article  CAS  Google Scholar 

  7. Yang Y, Huang HJ, Shen BF, Jin L, Jiang QG, Yang L, He HY. Anchoring nanosized Pd on three-dimensional boron- and nitrogen-codoped graphene aerogels as a highly active multifunctional electrocatalyst for formic acid and methanol oxidation reactions. Inorg Chem Front. 2020;7(3):700.

    Article  CAS  Google Scholar 

  8. Gao ZQ, Li MM, Wang JY, Zhu JX, Zhao XM, Huang HJ, Zhang JF, Wu YP, Fu YS, Wang X. Pt nanocrystals grown on three-dimensional architectures made from graphene and MoS2 nanosheets: highly efficient multifunctional electrocatalysts toward hydrogen evolution and methanol oxidation reactions. Carbon. 2018;139:369.

    Article  CAS  Google Scholar 

  9. Li SW, Ma SZ, Zhang YX, Zhao LM, Yang HL, Jin RF. Metal-organic interface engineering for coupling palladium nanocrystals over functionalized graphene as an advanced electrocatalyst of methanol and ethanol oxidation. J Colloid Interface Sci. 2021;588:384.

    Article  CAS  Google Scholar 

  10. Huang HJ, Guo XJ, Yan MM, Meng W, Xue Y, Xiao D, Jiang QG, Yang L, He HY. Well-dispersive Pt nanoparticles grown on 3D nitrogen- and sulfur-codoped graphene nanoribbon architectures: highly active electrocatalysts for methanol oxidation. Mater Today Energy. 2021;21:100814.

    Article  CAS  Google Scholar 

  11. Xu ML. Electrocatalytic performance of Pd–Ni nanowire arrays electrode for methanol electrooxidation in alkaline media. Rare Met. 2014;33(1):65.

    Article  CAS  Google Scholar 

  12. Li SW, Shu JH, Ma SZ, Yang HL, Jin J, Zhang XH, Jin RF. Engineering three-dimensional nitrogen-doped carbon black embedding nitrogen-doped graphene anchoring ultrafine surface-clean Pd nanoparticles as efficient ethanol oxidation electrocatalyst. Appl Catal B. 2021;280:119464.

    Article  CAS  Google Scholar 

  13. Li YR, Li MX, Li SN, Liu YJ, Chen J, Wang Y. A review of energy and environment electrocatalysis based on high-index faceted nanocrystals. Rare Met. 2021;40(12):3406.

    Article  CAS  Google Scholar 

  14. Yang CZ, He HY, Jiang QG, Liu XY, Shah SP, Huang HJ, Li WH. Pd nanocrystals grown on MXene and reduced graphene oxide co-constructed three-dimensional nanoarchitectures for efficient formic acid oxidation reaction. Int J Hydrogen Energy. 2021;46(1):589.

    Article  CAS  Google Scholar 

  15. Wu YN, Liao SJ, Guo HF, Hao XY, Liang ZX. Ultralow platinum-loading PtPdRu@PtRuIr/C catalyst with excellent CO tolerance and high performance for the methanol oxidation reaction. Rare Met. 2013;33(3):337.

    Article  CAS  Google Scholar 

  16. Liu DB, Li XY, Chen SM, Yan H, Wang CD, Wu CQ, Haleem YA, Duan S, Lu JL, Ge BH, Ajayan PM, Luo Y, Jiang J, Song L. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat Energy. 2019;4(6):512.

    Article  CAS  Google Scholar 

  17. Yan MM, Jiang QG, Zhang T, Wang JY, Yang L, Lu ZY, He HY, Fu YS, Wang X, Huang HJ. Three-dimensional low-defect carbon nanotube/nitrogen-doped graphene hybrid aerogel-supported Pt nanoparticles as efficient electrocatalysts toward the methanol oxidation reaction. J Mater Chem A. 2018;6(37):18165.

    Article  CAS  Google Scholar 

  18. Yang CZ, Jiang QG, Liu H, Yang L, He HY, Huang HJ, Li WH. Pt-on-Pd bimetallic nanodendrites stereoassembled on MXene nanosheets for use as high-efficiency electrocatalysts toward the methanol oxidation reaction. J Mater Chem A. 2021;9(27):15432.

    Article  CAS  Google Scholar 

  19. Yang CZ, Jiang QG, Huang HJ, He HY, Yang L, Li WH. Polyelectrolyte-induced stereoassembly of grain boundary-enriched platinum nanoworms on Ti3C2TX MXene nanosheets for efficient methanol oxidation. ACS Appl Mater Interfaces. 2020;12(21):23822.

    Article  CAS  Google Scholar 

  20. Shu JH, Li RX, Lian ZM, Zhang W, Jin RF, Yang HL, Li SW. In-situ oxidation of palladium–iridium nanoalloy anchored on nitrogen-doped graphene as an efficient catalyst for methanol electrooxidation. J Colloid Interface Sci. 2022;605:44.

    Article  CAS  Google Scholar 

  21. Xu ML, Yang XK, Zhang YJ, Xia SB, Dong P, Yang GT. Enhanced methanol oxidation activity of Au@Pd nanoparticles supported on MWCNTs functionalized by MB under ultraviolet irradiation. Rare Met. 2014;34(1):12.

    Article  CAS  Google Scholar 

  22. He Q, Tian D, Jiang HL, Cao DF, Wei SQ, Liu DB, Song P, Lin Y, Song L. Achieving efficient alkaline hydrogen evolution reaction over a Ni5P4 catalyst incorporating single-atomic Ru sites. Adv Mater. 2020;32(11):1906972.

    Article  CAS  Google Scholar 

  23. Lu Y, Fan DQ, Chen ZP, Xiao WP, Cao CC, Yang XF. Anchoring Co3O4 nanoparticles on MXene for efficient electrocatalytic oxygen evolution. Sci Bull. 2020;65(6):460.

    Article  CAS  Google Scholar 

  24. Yang Y, Song YX, Sun H, Xiang DY, Jiang QG, Lu ZY, He HY, Huang HJ. Rh-decorated three-dimensional graphene aerogel networks as highly-efficient electrocatalysts for direct methanol fuel cells. Front Energy Res. 2020;8:60.

    Article  Google Scholar 

  25. Xiong Y, Dong JC, Huang ZQ, Xin PY, Chen WX, Wang Y, Li Z, Jin Z, Xing W, Zhuang ZB, Ye JY, Wei X, Cao R, Gu L, Sun SG, Zhuang L, Chen XQ, Yang H, Chen C, Peng Q, Chang CR, Wang DS, Li YD. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat Nanotechnol. 2020;15(5):390.

    Article  CAS  Google Scholar 

  26. Ge JJ, Yin PQ, Chen Y, Cheng HF, Liu JW, Chen B, Tan CL, Yin PF, Zheng HX, Li QQ, Chen SM, Xu WJ, Wang XQ, Wu G, Sun RB, Shan XH, Hong X, Zhang H. Ultrathin amorphous/crystalline heterophase Rh and Rh alloy nanosheets as tandem catalysts for direct indole synthesis. Adv Mater. 2021;33(9):2006711.

    Article  CAS  Google Scholar 

  27. Yang CZ, Jiang QG, Li WH, He HY, Yang L, Lu ZY, Huang HJ. Ultrafine Pt nanoparticle-decorated 3D hybrid architectures built from reduced graphene oxide and MXene nanosheets for methanol oxidation. Chem Mater. 2019;31(22):9277.

    Article  CAS  Google Scholar 

  28. Zhou YZ, Tao XF, Chen GB, Lu RH, Wang D, Chen MX, Jin EQ, Yang J, Liang HW, Zhao Y, Feng XL, Narita A, Müllen K. Multilayer stabilization for fabricating high-loading single-atom catalysts. Nat Commun. 2020;11(1):5892.

    Article  CAS  Google Scholar 

  29. Li Y, Li X, Pillai HS, Lattimer J, Mohd AN, Karakalos S, Chen MJ, Guo L, Xu H, Yang J, Su D, Xin HL, Wu G. Ternary PtIrNi catalysts for efficient electrochemical ammonia oxidation. ACS Catal. 2020;10(7):3945.

    Article  CAS  Google Scholar 

  30. Yang Y, Huang HJ, Yang CZ, He HY. Ultrafine Rh-decorated 3D porous boron and nitrogen dual-doped graphene architecture as an efficient electrocatalyst for methanol oxidation reaction. ACS Appl Energy Mater. 2021;4(1):376.

    Article  CAS  Google Scholar 

  31. Liu S, Wang X, Yu HG, Wu YP, Li B, Lan YQ, Wu T, Zhang J, Li DS. Two new pseudo-isomeric nickel (II) metal–organic frameworks with efficient electrocatalytic activity toward methanol oxidation. Rare Met. 2021;40(2):489.

    Article  CAS  Google Scholar 

  32. Huang HJ, Wang X. Recent progress on carbon-based support materials for electrocatalysts of direct methanol fuel cells. J Mater Chem A. 2014;2(18):6266.

    Article  CAS  Google Scholar 

  33. Liu MM, Zhang RZ, Chen W. Graphene-supported nanoelectrocatalysts for fuel cells: synthesis, properties, and applications. Chem Rev. 2014;114(10):5117.

    Article  CAS  Google Scholar 

  34. Huang HJ, Zhu JX, Zhang WY, Tiwary CS, Zhang JF, Zhang X, Jiang QG, He HY, Wu YP, Huang W, Ajayan PM, Yan QY. Controllable codoping of nitrogen and sulfur in graphene for highly efficient Li-oxygen batteries and direct methanol fuel cells. Chem Mater. 2016;28(6):1737.

    Article  CAS  Google Scholar 

  35. Ren JX, Zhang J, Yang CZ, Yang Y, Zhang YF, Yang FX, Ma RQ, Yang L, He HY, Huang HJ. Pd nanocrystals anchored on 3D hybrid architectures constructed from nitrogen-doped graphene and low-defect carbon nanotube as high-performance multifunctional electrocatalysts for formic acid and methanol oxidation. Mater Today Energy. 2020;16:100409.

    Article  Google Scholar 

  36. Li Y, Wen HJ, Yang J, Zhou YZ, Cheng X. Boosting oxygen reduction catalysis with N, F, and S tri-doped porous graphene: tertiary N-precursors regulates the constitution of catalytic active sites. Carbon. 2019;142:1.

    Article  CAS  Google Scholar 

  37. Karousis N, Suarez-Martinez I, Ewels CP, Tagmatarchis N. Structure, properties, functionalization, and applications of carbon nanohorns. Chem Rev. 2016;116(8):4850.

    Article  CAS  Google Scholar 

  38. Zhu CX, Liu D, Chen Z, Li LB, You TY. Superior catalytic activity of Pt/carbon nanohorns nanocomposites toward methanol and formic acid oxidation reactions. J Colloid Interface Sci. 2018;511:77.

    Article  CAS  Google Scholar 

  39. Guo XJ, Yang L, Shen BF, Wei YJ, Yang Y, Yang CZ, Jiang QG, He HY, Huang HJ. Ultrafine Pd nanocrystals anchored onto single-walled carbon nanohorns: a highly-efficient multifunctional electrocatalyst with ultra-low Pd loading for formic acid and methanol oxidation. Mater Chem Phys. 2020;250:123167.

    Article  CAS  Google Scholar 

  40. Niu B, Xu W, Guo ZD, Zhou NZ, Liu Y, Shi ZJ, Lian YF. Controllable deposition of platinum nanoparticles on single-wall carbon nanohorns as catalyst for direct methanol fuel cells. J Nanosci Nanotechnol. 2012;12(9):7376.

    Article  CAS  Google Scholar 

  41. Zhu SY, Xu GB. Single-walled carbon nanohorns and their applications. Nanoscale. 2010;2(12):2538.

    Article  CAS  Google Scholar 

  42. Berber S, Kwon YK, Tomanek D. Electronic and structural properties of carbon nanohorns. Phys Rev B. 2000;62(4):2291.

    Article  Google Scholar 

  43. Halder A, Sharma S, Hegde MS, Ravishankar N. Controlled attachment of ultrafine platinum nanoparticles on functionalized carbon nanotubes with high electrocatalytic activity for methanol oxidation. J Phys Chem C. 2009;113(4):1466.

    Article  CAS  Google Scholar 

  44. Kang YQ, Xue Q, Jin PJ, Jiang JX, Zeng JH, Chen Y. Rhodium nanosheets–reduced graphene oxide hybrids: a highly active platinum-alternative electrocatalyst for the methanol oxidation reaction in alkaline media. ACS Sustain Chem Eng. 2017;5(11):10156.

    Article  CAS  Google Scholar 

  45. Zhu JY, Chen SQ, Xue Q, Li FM, Yao HC, Xu L, Chen Y. Hierarchical porous Rh nanosheets for methanol oxidation reaction. Appl Catal B. 2020;264:118520.

    Article  CAS  Google Scholar 

  46. Kang YQ, Li FM, Li SN, Ji PJ, Zeng JH, Jiang JX, Chen Y. Unexpected catalytic activity of rhodium nanodendrites with nanosheet subunits for methanol electrooxidation in an alkaline medium. Nano Res. 2016;9(12):3893.

    Article  CAS  Google Scholar 

  47. Wang ZQ, Zhang HG, Liu SL, Dai ZC, Wang P, Xu Y, Li XN, Wang L, Wang HJ. Engineering bunched RhTe nanochains for efficient methanol oxidation electrocatalysis. Chem Commun. 2020;56(88):13595.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (No. 51802077) and the Fundamental Research Funds for the Central Universities (No. B210202093).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Jie Huang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2265 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, XJ., Zhang, Q., Li, YN. et al. Nanosized Rh grown on single-walled carbon nanohorns for efficient methanol oxidation reaction. Rare Met. 41, 2108–2117 (2022). https://doi.org/10.1007/s12598-021-01882-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01882-2

Keywords

Navigation