Skip to main content

Advertisement

Log in

Tumour-Infiltrating Lymphocytes (TILs) in Breast Cancer: a Predictive or a Prognostic Marker?

  • Systemic Research (J Cortes, Section Editor)
  • Published:
Current Breast Cancer Reports Aims and scope Submit manuscript

Abstract

Breast cancer has not been considered as an immunogenic solid cancer type; however, recent studies demonstrate evidence of significant prognostic information that can be derived from immune cell infiltration via tumour-infiltrating lymphocytes (TILs) in patient tumours. The presence of TILs has been associated with increased response rates to cytotoxic chemotherapy as well as targeted therapies, leading to improved disease-free and overall survival in certain breast cancer subtypes. Accordingly, experts have developed a standardized methodology for evaluating TILs within clinical specimens in histopathological practice. An overview of a newly established practical guideline for TIL evaluation in breast cancer is described in this paper. Furthermore, this review discusses the predictive and prognostic significance of TILs, highlighting recent evidence linking TILs to prognosis in breast cancer. In addition, it summarizes the most current understanding of TIL composition as well as mechanisms of immunity generation and suppression. Overall, the current literature demonstrates that TILs are proving to be a promising target for the treatment of immunogenic breast cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Liu S et al. CD8+ lymphocyte infiltration is an independent favorable prognostic indicator in basal-like breast cancer. Breast Cancer Res. 2012;14(2):R48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Ono M et al. Tumor-infiltrating lymphocytes are correlated with response to neoadjuvant chemotherapy in triple-negative breast cancer. Breast Cancer Res Treat. 2012;132(3):793–805.

    Article  CAS  PubMed  Google Scholar 

  3. West NR et al. Tumour-infiltrating FOXP3(+) lymphocytes are associated with cytotoxic immune responses and good clinical outcome in oestrogen receptor-negative breast cancer. Br J Cancer. 2013;108(1):155–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Yamaguchi R et al. Tumor-infiltrating lymphocytes are important pathologic predictors for neoadjuvant chemotherapy in patients with breast cancer. Hum Pathol. 2012;43(10):1688–94.

    Article  CAS  PubMed  Google Scholar 

  5. Sun S et al. PD-1(+) immune cell infiltration inversely correlates with survival of operable breast cancer patients. Cancer Immunol Immunother. 2014;63(4):395–406.

    Article  CAS  PubMed  Google Scholar 

  6. Loi, S., et al., Tumor infiltrating lymphocytes (TILs) indicate trastuzumab benefit in early-stage HER2-positive breast cancer (HER2+ BC). Cancer Res, 2013. 73: p. abstract S1-05.

  7. Adams S et al. Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol. 2014;32(27):2959–66.

    Article  PubMed  Google Scholar 

  8. Loi S et al. Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann Oncol. 2014;25(8):1544–50. This study shows the benefit of TILs in different breast cancer subtypes. It shows an association between higher levels of TILs and decreased distant recurrence rates in primary TNBC as well as increased trastuzumab benefit in HER2+ disease.

    Article  CAS  PubMed  Google Scholar 

  9. Ali HR et al. Association between CD8+ T-cell infiltration and breast cancer survival in 12,439 patients. Ann Oncol. 2014;25(8):1536–43.

    Article  CAS  PubMed  Google Scholar 

  10. Denkert C et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol. 2010;28(1):105–13.

    Article  CAS  PubMed  Google Scholar 

  11. Issa-Nummer Y et al. Prospective validation of immunological infiltrate for prediction of response to neoadjuvant chemotherapy in HER2-negative breast cancer—a substudy of the neoadjuvant GeparQuinto trial. PLoS One. 2013;8(12):e79775.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Denkert, C., et al., Increased tumor-associated lymphocytes predict benefit from addition of carboplatin to neoadjuvant therapy for triple-negative and HER2-positive early breast cancer in the GeparSixto trial (GBG 66), in SABCS2013: San Antonio, Texas, USA.

  13. Cortazar P et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet. 2014;384(9938):164–72.

    Article  PubMed  Google Scholar 

  14. Loi S et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol. 2013;31(7):860–7.

    Article  CAS  PubMed  Google Scholar 

  15. Perez, E.A., et al., Association of genomic analysis of immune function genes and clinical outcome in the NCCTG (Alliance) N9831 adjuvant trastuzumab trial. J Clin Oncol, 2014. 32: p. abstr 509.

  16. Baselga J et al. Biomarker analyses in CLEOPATRA: a phase III, placebo-controlled study of pertuzumab in human epidermal growth factor receptor 2-positive, first-line metastatic breast cancer. J Clin Oncol. 2014;32(33):3753–61.

    Article  CAS  PubMed  Google Scholar 

  17. Lee S et al. Prognostic impact of FOXP3 expression in triple-negative breast cancer. Acta Oncol. 2013;52(1):73–81.

    Article  CAS  PubMed  Google Scholar 

  18. Seo AN et al. Tumour-infiltrating CD8+ lymphocytes as an independent predictive factor for pathological complete response to primary systemic therapy in breast cancer. Br J Cancer. 2013;109(10):2705–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Demir L et al. Predictive and prognostic factors in locally advanced breast cancer: effect of intratumoral FOXP3+ Tregs. Clin Exp Metastasis. 2013;30(8):1047–62.

    Article  CAS  PubMed  Google Scholar 

  20. Melichar B et al. Predictive and prognostic significance of tumor-infiltrating lymphocytes in patients with breast cancer treated with neoadjuvant systemic therapy. Anticancer Res. 2014;34(3):1115–25.

    CAS  PubMed  Google Scholar 

  21. Koh YW et al. Prognostic significance of the ratio of absolute neutrophil to lymphocyte counts for breast cancer patients with ER/PR-positivity and HER2-negativity in neoadjuvant setting. Tumour Biol. 2014;35(10):9823–30.

    Article  CAS  PubMed  Google Scholar 

  22. Mahmoud S et al. CD8(+) T lymphocytes infiltrating breast cancer: a promising new prognostic marker? Oncoimmunology. 2012;1(3):364–5.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Mohammed ZM et al. The relationship between lymphocyte subsets and clinico-pathological determinants of survival in patients with primary operable invasive ductal breast cancer. Br J Cancer. 2013;109(6):1676–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Schatton T et al. Tumor-infiltrating lymphocytes and their significance in melanoma prognosis. Methods Mol Biol. 2014;1102:287–324.

    Article  PubMed  Google Scholar 

  25. Garcia-Martinez E et al. Tumor-infiltrating immune cell profiles and their change after neoadjuvant chemotherapy predict response and prognosis of breast cancer. Breast Cancer Res. 2014;16(6):488.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Emens LA. Breast cancer immunobiology driving immunotherapy: vaccines and immune checkpoint blockade. Expert Rev Anticancer Ther. 2012;12(12):1597–611.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Gu-Trantien C et al. CD4(+) follicular helper T cell infiltration predicts breast cancer survival. J Clin Invest. 2013;123(7):2873–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Godet Y et al. Analysis of spontaneous tumor-specific CD4 T-cell immunity in lung cancer using promiscuous HLA-DR telomerase-derived epitopes: potential synergistic effect with chemotherapy response. Clin Cancer Res. 2012;18(10):2943–53.

    Article  CAS  PubMed  Google Scholar 

  29. Chen Z et al. Intratumoral CD8(+) cytotoxic lymphocyte is a favorable prognostic marker in node-negative breast cancer. PLoS One. 2014;9(4):e95475.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Rathore AS et al. CD3+, CD4+ & CD8+ tumour infiltrating lymphocytes (TILs) are predictors of favourable survival outcome in infiltrating ductal carcinoma of breast. Indian J Med Res. 2014;140(3):361–9.

    PubMed Central  PubMed  Google Scholar 

  31. Song G et al. Elevated level of peripheral CD8(+)CD28(−) T lymphocytes are an independent predictor of progression-free survival in patients with metastatic breast cancer during the course of chemotherapy. Cancer Immunol Immunother. 2013;62(6):1123–30.

    Article  CAS  PubMed  Google Scholar 

  32. Bos R et al. Functional differences between low- and high-affinity CD8(+) T cells in the tumor environment. Oncoimmunology. 2012;1(8):1239–47.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Bos R, Sherman LA. CD4+ T-cell help in the tumor milieu is required for recruitment and cytolytic function of CD8+ T lymphocytes. Cancer Res. 2010;70(21):8368–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. de Leeuw RJ et al. The prognostic value of FoxP3+ tumor-infiltrating lymphocytes in cancer: a critical review of the literature. Clin Cancer Res. 2012;18(11):3022–9.

    Article  Google Scholar 

  35. Takenaka M et al. FOXP3 expression in tumor cells and tumor-infiltrating lymphocytes is associated with breast cancer prognosis. Mol Clin Oncol. 2013;1(4):625–32.

    PubMed Central  PubMed  Google Scholar 

  36. Droeser R et al. Differential pattern and prognostic significance of CD4+, FOXP3+ and IL-17+ tumor infiltrating lymphocytes in ductal and lobular breast cancers. BMC Cancer. 2012;12:134.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Faghih Z et al. Immune profiles of CD4+ lymphocyte subsets in breast cancer tumor draining lymph nodes. Immunol Lett. 2014;158(1–2):57–65.

    Article  CAS  PubMed  Google Scholar 

  38. Ruffell B et al. Leukocyte composition of human breast cancer. Proc Natl Acad Sci U S A. 2012;109(8):2796–801.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Gooden MJ et al. The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. Br J Cancer. 2011;105(1):93–103.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Krell J, Frampton AE, Stebbing J. The clinical significance of tumor infiltrating lymphoctyes in breast cancer: does subtype matter? BMC Cancer. 2012;12:135.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Loi S. Tumor-infiltrating lymphocytes, breast cancer subtypes and therapeutic efficacy. Oncoimmunology. 2013;2(7):e24720.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Cimino-Mathews A et al. Metastatic triple-negative breast cancers at first relapse have fewer tumor-infiltrating lymphocytes than their matched primary breast tumors: a pilot study. Hum Pathol. 2013;44(10):2055–63.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Kim ST et al. Tumor-infiltrating lymphocytes, tumor characteristics, and recurrence in patients with early breast cancer. Am J Clin Oncol. 2013;36(3):224–31.

    Article  CAS  PubMed  Google Scholar 

  44. Jia Y et al. Levels of lymphocyte subsets in peripheral blood prior treatment are associated with aggressive breast cancer phenotypes or subtypes. Med Oncol. 2014;31(6):981.

    Article  PubMed  Google Scholar 

  45. Hix LM et al. Tumor STAT1 transcription factor activity enhances breast tumor growth and immune suppression mediated by myeloid-derived suppressor cells. J Biol Chem. 2013;288(17):11676–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Boyle ST, Kochetkova M. Breast cancer stem cells and the immune system: promotion, evasion and therapy. J Mammary Gland Biol Neoplasia. 2014;19(2):203–11.

    Article  PubMed  Google Scholar 

  47. Bianchini G, Gianni L. The immune system and response to HER2-targeted treatment in breast cancer. Lancet Oncol. 2014;15(2):e58–68.

    Article  CAS  PubMed  Google Scholar 

  48. Dong DD et al. Importance of HLA-G expression and tumor infiltrating lymphocytes in molecular subtypes of breast cancer. Hum Immunol. 2012;73(10):998–1004.

    Article  CAS  PubMed  Google Scholar 

  49. Roscilli G et al. Circulating MMP11 and specific antibody immune response in breast and prostate cancer patients. J Transl Med. 2014;12:54.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Chawla A et al. Immune aspects of the breast tumor microenvironment. Breast Cancer Manag. 2013;2(3):231–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Schirrmacher V et al. T cell memory, anergy and immunotherapy in breast cancer. J Mammary Gland Biol Neoplasia. 2002;7(2):201–8.

    Article  PubMed  Google Scholar 

  52. Schalper KA. PD-L1 expression and tumor-infiltrating lymphocytes: revisiting the antitumor immune response potential in breast cancer. Oncoimmunology. 2014;3:e29288.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Mamessier E et al. “Stealth” tumors: breast cancer cells shun NK-cells anti-tumor immunity. Oncoimmunology. 2012;1(3):366–8.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Mamessier E et al. Human breast tumor cells induce self-tolerance mechanisms to avoid NKG2D-mediated and DNAM-mediated NK cell recognition. Cancer Res. 2011;71(21):6621–32.

    Article  CAS  PubMed  Google Scholar 

  55. Mamessier E et al. Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity. J Clin Invest. 2011;121(9):3609–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. da Cunha A, Michelin MA, Murta EF. Pattern response of dendritic cells in the tumor microenvironment and breast cancer. World J Clin Oncol. 2014;5(3):495–502.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Liu Q et al. Blockade of Fas signaling in breast cancer cells suppresses tumor growth and metastasis via disruption of Fas signaling-initiated cancer-related inflammation. J Biol Chem. 2014;289(16):11522–35.

    Article  CAS  PubMed  Google Scholar 

  58. Kadam CY, Abhang SA. Serum levels of soluble Fas ligand, granzyme B and cytochrome c during adjuvant chemotherapy of breast cancer. Clin Chim Acta. 2015;438:98–102.

    Article  CAS  PubMed  Google Scholar 

  59. Bebenek M, Dus D, Kozlak J. Prognostic value of the Fas/Fas ligand system in breast cancer. Contemp Oncol (Pozn). 2013;17(2):120–2.

    CAS  Google Scholar 

  60. Holt DM et al. Modulation of host natural killer cell functions in breast cancer via prostaglandin E2 receptors EP2 and EP4. J Immunother. 2012;35(2):179–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Bergenfelz C et al. Wnt5a induces a tolerogenic phenotype of macrophages in sepsis and breast cancer patients. J Immunol. 2012;188(11):5448–58.

    Article  CAS  PubMed  Google Scholar 

  62. Gelao L et al. Dendritic cell-based vaccines: clinical applications in breast cancer. Immunotherapy. 2014;6(3):349–60.

    Article  CAS  PubMed  Google Scholar 

  63. Campbell MJ et al. The prognostic implications of macrophages expressing proliferating cell nuclear antigen in breast cancer depend on immune context. PLoS One. 2013;8(10):e79114.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Deng R et al. Dimethyl sulfoxide suppresses mouse 4T1 breast cancer growth by modulating tumor-associated macrophage differentiation. J Breast Cancer. 2014;17(1):25–32.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Nickerson NK et al. Autocrine-derived epidermal growth factor receptor ligands contribute to recruitment of tumor-associated macrophage and growth of basal breast cancer cells in vivo. Oncol Res. 2013;20(7):303–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Schalper KA et al. In situ tumor PD-L1 mRNA expression is associated with increased TILs and better outcome in breast carcinomas. Clin Cancer Res. 2014;20(10):2773–82.

    Article  CAS  PubMed  Google Scholar 

  67. Kmieciak M et al. Activated NKT cells and NK cells render T cells resistant to myeloid-derived suppressor cells and result in an effective adoptive cellular therapy against breast cancer in the FVBN202 transgenic mouse. J Immunol. 2011;187(2):708–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Wang Z et al. Quantitative assessment of the association between three polymorphisms in FAS and FASL gene and breast cancer risk. Tumour Biol. 2014;35(4):3035–9.

    Article  CAS  PubMed  Google Scholar 

  69. Verma C et al. Abnormal T regulatory cells (Tregs: FOXP3+, CTLA-4+), myeloid-derived suppressor cells (MDSCs: monocytic, granulocytic) and polarised T helper cell profiles (Th1, Th2, Th17) in women with large and locally advanced breast cancers undergoing neoadjuvant chemotherapy (NAC) and surgery: failure of abolition of abnormal treg profile with treatment and correlation of treg levels with pathological response to NAC. J Transl Med. 2013;11:16.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Liu S et al. Prognostic significance of FOXP3+ tumor infiltrating lymphocytes in breast cancer depends on estrogen receptor and human epidermal growth factor receptor-2 expression status and concurrent cytotoxic T-cell infiltration. Breast Cancer Res. 2014;16(5):432. This study showed that FOXP3+ regulatory TILs are a poor prognostic indicator in ER-positive breast cancer, but a favorable prognostic factor in the HER2+/ER-negative subtype, thus revealing that the prognostic value of FOXP3+ TILs differs depending on ER and HER2 expression status and CD8+ T cell infiltration.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Lal A et al. FOXP3-positive regulatory T lymphocytes and epithelial FOXP3 expression in synchronous normal, ductal carcinoma in situ, and invasive cancer of the breast. Breast Cancer Res Treat. 2013;139(2):381–90.

    Article  CAS  PubMed  Google Scholar 

  72. Forghani P, Khorramizadeh MR, Waller EK. Silibinin inhibits accumulation of myeloid-derived suppressor cells and tumor growth of murine breast cancer. Cancer Med. 2014;3(2):215–24.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Alizadeh D et al. Doxorubicin eliminates myeloid-derived suppressor cells and enhances the efficacy of adoptive T-cell transfer in breast cancer. Cancer Res. 2014;74(1):104–18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Yu J et al. Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer. J Immunol. 2013;190(7):3783–97.

    Article  CAS  PubMed  Google Scholar 

  75. Singh R et al. Proteomic identification of mitochondrial targets of arginase in human breast cancer. PLoS One. 2013;8(11):e79242.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Markowitz J et al. Myeloid-derived suppressor cells in breast cancer. Breast Cancer Res Treat. 2013;140(1):13–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Liu H et al. Specific growth inhibition of ErbB2-expressing human breast cancer cells by genetically modified NK92 cells. Oncol Rep. 2015;33(1):95–102.

    PubMed  Google Scholar 

  78. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64.

    Article  CAS  PubMed  Google Scholar 

  79. Alistar A et al. Dual roles for immune metagenes in breast cancer prognosis and therapy prediction. Genome Med. 2014;6(10):80.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Jiang X. Harnessing the immune system for the treatment of breast cancer. J Zhejiang Univ Sci B. 2014;15(1):1–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Wolchok JD, Chan TA. Cancer: antitumour immunity gets a boost. Nature. 2014;515(7528):496–8.

    Article  CAS  PubMed  Google Scholar 

  82. Mao H et al. New insights of CTLA-4 into its biological function in breast cancer. Curr Cancer Drug Targets. 2010;10(7):728–36.

    Article  CAS  PubMed  Google Scholar 

  83. Jaberipour M et al. Increased CTLA-4 and FOXP3 transcripts in peripheral blood mononuclear cells of patients with breast cancer. Pathol Oncol Res. 2010;16(4):547–51.

    Article  CAS  PubMed  Google Scholar 

  84. Muenst S et al. Expression of programmed death ligand 1 (PD-L1) is associated with poor prognosis in human breast cancer. Breast Cancer Res Treat. 2014;146(1):15–24.

    Article  CAS  PubMed  Google Scholar 

  85. Muenst S et al. The presence of programmed death 1 (PD-1)-positive tumor-infiltrating lymphocytes is associated with poor prognosis in human breast cancer. Breast Cancer Res Treat. 2013;139(3):667–76.

    Article  CAS  PubMed  Google Scholar 

  86. Gubin MM et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature. 2014;515(7528):577–81.

    Article  CAS  PubMed  Google Scholar 

  87. Herbst RS et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515(7528):563–7. This paper reveals that responses to anti-PD-L1 were observed in patients expressing high levels of PD-L1, particularly in TILs. They showed that it was most effective in patients with pre-existing immunity suppressed by PD-L1 and that immunity was reinvigorated on antibody treatment.

    Article  CAS  PubMed  Google Scholar 

  88. Powles T et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature. 2014;515(7528):558–62.

    Article  CAS  PubMed  Google Scholar 

  89. Tumeh PC et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568–71.

    Article  CAS  PubMed  Google Scholar 

  90. Deng L et al. Radiation and anti-PD-L1 antibody combinatorial therapy induces T cell-mediated depletion of myeloid-derived suppressor cells and tumor regression. Oncoimmunology. 2014;3:e28499.

    Article  PubMed Central  PubMed  Google Scholar 

  91. Deng L et al. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest. 2014;124(2):687–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Li F et al. Anti-tumor immunological response induced by cryoablation and anti-CTLA-4 antibody in an in vivo RM-1 cell prostate cancer murine model. Neoplasma. 2014;61(6):659–71.

    Article  CAS  PubMed  Google Scholar 

  93. Yoshimoto Y et al. Radiotherapy-induced anti-tumor immunity contributes to the therapeutic efficacy of irradiation and can be augmented by CTLA-4 blockade in a mouse model. PLoS One. 2014;9(3):e92572.

    Article  PubMed Central  PubMed  Google Scholar 

  94. Kvistborg P et al. Anti-CTLA-4 therapy broadens the melanoma-reactive CD8+ T cell response. Sci Transl Med. 2014;6(254):254–128. This paper showed that anti-CTLA-4 treatment induces T cell responses and infrequently boosts pre-existing immune responses, providing evidence of anti-CTLA-4 therapy-induced T cell priming as a component of the clinical mode of action.

    Article  Google Scholar 

  95. Klyushnenkova EN et al. Breaking immune tolerance by targeting CD25+ regulatory T cells is essential for the anti-tumor effect of the CTLA-4 blockade in an HLA-DR transgenic mouse model of prostate cancer. Prostate. 2014;74(14):1423–32.

    Article  CAS  PubMed  Google Scholar 

  96. Fourcade J et al. PD-1 and Tim-3 regulate the expansion of tumor antigen-specific CD8(+) T cells induced by melanoma vaccines. Cancer Res. 2014;74(4):1045–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. da Silva IP et al. Reversal of NK-cell exhaustion in advanced melanoma by Tim-3 blockade. Cancer Immunol Res. 2014;2(5):410–22.

    Article  PubMed  Google Scholar 

  98. Salgado, R., et al., The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol, 2014. This paper highlights the importance of TIL measurement in breast cancer and provides a detailed standardized methodology for evaluating TILs in histopathological practice, in a research setting as well as in clinical trials.

  99. Salgado R, et al. Harmonization of the evaluation of tumour-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an international TILs-working group 2014 Ann Oncol mdu450 first published online September 11, 2014 doi: 10.1093/annonc/mdu450. By permission of Oxford University Press on behalf of the European Society for Medical Oncology

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Sathana Dushyanthen, Roberto Salgado, Peter Savas, Karen Willard-Gallo and Sherene Loi declare that they have no conflict of interest.

Carsten Denkert is co-founder and shareholder of Sividon Diagnostics and co-inventor of patent EP 14153692.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sherene Loi.

Additional information

This article is part of the Topical Collection on Systemic Research

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dushyanthen, S., Savas, P., Willard-Gallo, K. et al. Tumour-Infiltrating Lymphocytes (TILs) in Breast Cancer: a Predictive or a Prognostic Marker?. Curr Breast Cancer Rep 7, 59–70 (2015). https://doi.org/10.1007/s12609-014-0178-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12609-014-0178-4

Keywords

Navigation