Skip to main content
Log in

Doping rate, Interface states and Polarization Effects on Dielectric Properties, Electric Modulus, and AC Conductivity in PCBM/NiO:ZnO/p-Si Structures in Wide Frequency Range

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In order to study, in detail, the relationship of effect of NiO doping in ZnO on AC electrical-conductivity (σac), complex-permittivity (ɛ*), complex-electric modulus (M*) and interface-states (Nss), we have been used capacitance/conductance-voltage (C/G-V) measurements of the performed Al/PCBM/NiO:ZnO/p-Si structures over wide-range of frequency and voltage. For this reason, various-ratio (2, 10, and 20%) NiO doped ZnO layer were coated on the Si(p-type) wafer as an interlayer. The values of complex dielectric-constant/loss (ɛ'/ɛ"), loss tangent (tanδ), ac electrical-conductivity (σac), real/imaginary-components of complex electric modulus (M’, M”) were calculated from the C/G-V measurements as function of frequency between 0.5-2.5V by 100 mV steps. All parameters were found distinctly-function of frequency/voltage owing to the existence of Nss, surface/dipole-polarizations and interlayer particularly at low and intermediate frequencies. The observed the higher value of dielectric constant (=2.5 for 2%(NiO) and 4.25 for 10 % (NiO)) even at 10 kHz show that (PCBM/NiO:ZnO) thin film can be successfully used instead of conventional low-dielectric SiO2. The value of σac increase with increasing doping rate of NiO. Thus, the used high-dielectric organic thin film between metal and semiconductor can be also an advantageous for applications in place of conventional metal/oxide/semiconductor (MOS) structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Çetinkaya HG, Demirezen S, Altındal Yerişkin S (2021) Electrical parameters of Au/(%1Ni-PVA)/n-Si (MPS) structure: Surface states and their lifetimes. Phys B Condens Matter 621:413207. https://doi.org/10.1016/j.physb.2021.413207

    Article  CAS  Google Scholar 

  2. Kaymaz A, Evcin Baydilli E, Uslu Tecimer H et al (2021) Evaluation of gamma-irradiation effects on the electrical properties of Al/(ZnO-PVA)/p-Si type Schottky diodes using current-voltage measurements. Radiat Phys Chem 183:109430. https://doi.org/10.1016/j.radphyschem.2021.109430

    Article  CAS  Google Scholar 

  3. Yücedağ İ, Kaya A, Altindal Ş, Uslu İ (2014) Electrical and dielectric properties and intersection behavior of G/ω-V plots for Al/Co-PVA/p-Si (MPS) structures at temperatures below room temperature. J Korean Phys Soc 65:2082–2089. https://doi.org/10.3938/jkps.65.2082

    Article  CAS  Google Scholar 

  4. Alptekin S, Tataroğlu A, Altindal (2019) Dielectric, modulus and conductivity studies of Au/PVP/n-Si (MPS) structure in the wide range of frequency and voltage at room temperature. J Mater Sci Mater Electron 30:6853–6859. https://doi.org/10.1007/s10854-019-00998-7

    Article  CAS  Google Scholar 

  5. Altındal Yerişkin S, Şafak Asar Y (2021) Influence of graphene doping rate in PVA organic thin film on the performance of Al/p-Si structure. J Mater Sci Mater Electron 32:22860–22867. https://doi.org/10.1007/s10854-021-06763-z

    Article  CAS  Google Scholar 

  6. Karadaş S, Altındal Yeriskin S, Balbası M, Azizian-Kalandaragh Y (2021) Journal of Physics and Chemistry of Solids Complex dielectric , complex electric modulus , and electrical conductivity in Al /( Graphene-PVA )/ p-Si ( metal-polymer-semiconductor ) structures. 148:. doi: 10.1016/j.jpcs.2020.109740

  7. Nicollian EH, Brews JR (1982) Metal oxide semiconductor (MOS) physics and technology, New York

  8. Sze SM (1981) Physics of Semiconductor Devices2nd edn. Wiley, New York

    Google Scholar 

  9. Chelkowski A (1980) Dielectric Physics. Elsevier, Amsterdam

    Google Scholar 

  10. Kaya A, Çetinkaya HG, Altındal Ş, Uslu İ (2016) A comparative study on the electrical parameters of Au/n-Si Schottky diodes with and without interfacial (Ca1.9Pr0.1Co4Ox) layer. Int J Mod Phys B 30(1650090). https://doi.org/10.1142/S0217979216500909

  11. Barkhordari A, Özçelik S, Altındal Ş et al (2021) The effect of PVP: BaTiO 3 interlayer on the conduction mechanism and electrical properties at MPS structures. Phys Scr 96:085805. https://doi.org/10.1088/1402-4896/abeba8

    Article  Google Scholar 

  12. Tecimer H, Tunç T, Altındal Ş (2018) Investigation of photovoltaic effect on electric and dielectric properties of Au/n-Si Schottky barrier diodes with nickel (Ni)–zinc (Zn) doped organic interface layer. J Mater Sci Mater Electron 29:3790–3799. https://doi.org/10.1007/s10854-017-8314-3

    Article  CAS  Google Scholar 

  13. Kınacı B, Özçelik S (2013) Analysis of the Temperature Dependence of the Capacitance–Voltage and Conductance–Voltage Characteristics of Au/TiO2(rutile)/n-Si Structures. J Electron Mater 42:1108–1113. https://doi.org/10.1007/s11664-013-2524-0

    Article  CAS  Google Scholar 

  14. Tanrikulu EE, Yildiz DE, Günen A, Altindal (2015) Frequency and voltage dependence of electric and dielectric properties of Au/TiO2/n-4H-SiC (metal-insulator-semiconductor) type Schottky barrier diodes. Phys Scr 90:. doi: https://doi.org/10.1088/0031-8949/90/9/095801

  15. Çetinkaya HG, Alialy S, Altindal et al (2015) Investigation of negative dielectric constant in Au/1 % graphene (GP) doped-Ca1.9Pr0.1Co4Ox/n-Si structures at forward biases using impedance spectroscopy analysis. J Mater Sci Mater Electron 26:3186–3195. https://doi.org/10.1007/s10854-015-2816-7

    Article  CAS  Google Scholar 

  16. Çetinkaya HG, Kaya A, Altındal Ş, Koçyiğit S (2015) Electrical and dielectric properties of Au/1% graphene (GP)+Ca 1.9 Pr 0.1 Co 4 O x doped poly(vinyl alcohol)/n-Si structures as function of temperature and voltage. Can J Phys 93:1213–1220. https://doi.org/10.1139/cjp-2014-0628

    Article  CAS  Google Scholar 

  17. Liu G-Z, Wang C, Wang C-C et al (2008) Effects of interfacial polarization on the dielectric properties of BiFeO3 thin film capacitors. Appl Phys Lett 92:122903. https://doi.org/10.1063/1.2900989

    Article  CAS  Google Scholar 

  18. Hoque MM, Dutta A, Kumar S, Sinha TP (2014) Dielectric Relaxation and Conductivity of Ba(Mg1/3Ta2/3)O3 and Ba(Zn1/3Ta2/3)O3. J Mater Sci Technol 30:311–320. https://doi.org/10.1016/j.jmst.2013.10.021

    Article  CAS  Google Scholar 

  19. Şafak-Asar Y, Asar T, Altındal Ş, Özçelik S (2015) Investigation of dielectric relaxation and ac electrical conductivity using impedance spectroscopy method in (AuZn)/TiO2/p-GaAs(110) schottky barrier diodes. J Alloys Compd 628:442–449. https://doi.org/10.1016/j.jallcom.2014.12.170

    Article  CAS  Google Scholar 

  20. Badali Y, Nikravan A, Altındal Ş, Uslu İ (2018) Effects of a Thin Ru-Doped PVP Interface Layer on Electrical Behavior of Ag/n-Si Structures. J Electron Mater 47:3510–3520. https://doi.org/10.1007/s11664-018-6195-8

    Article  CAS  Google Scholar 

  21. Tan SO, Tecimer H, Cicek O (2017) Comparative investigation on the effects of organic and inorganic interlayers in Au/n-GaAs Schottky diodes. IEEE Trans Electron Devices 64:984–990. https://doi.org/10.1109/TED.2016.2647380

    Article  CAS  Google Scholar 

  22. Yerişkin SA, Balbaşı M, Orak İ (2017) The effects of (graphene doped-PVA) interlayer on the determinative electrical parameters of the Au/n-Si (MS) structures at room temperature. J Mater Sci Mater Electron 28:14040–14048. https://doi.org/10.1007/s10854-017-7255-1

    Article  CAS  Google Scholar 

  23. Bilkan Ç, Azizian-Kalandaragh Y, Sevgili Ö, Altındal Ş (2019) Investigation of the efficiencies of the (SnO2-PVA) interlayer in Au/n-Si (MS) SDs on electrical characteristics at room temperature by comparison. J Mater Sci Mater Electron 30:20479–20488. https://doi.org/10.1007/s10854-019-02395-6

    Article  CAS  Google Scholar 

  24. Alptekin S, Altındal Ş (2019) A comparative study on current/capacitance: voltage characteristics of Au/n-Si (MS) structures with and without PVP interlayer. J Mater Sci Mater Electron 30:6491–6499. https://doi.org/10.1007/s10854-019-00954-5

    Article  CAS  Google Scholar 

  25. Çetinkaya HG, Sevgili Ö, Altındal Ş (2019) The fabrication of Al/p-Si (MS) type photodiode with (%2 ZnO-doped CuO) interfacial layer by sol gel method and their electrical characteristics. Phys B Condens Matter 560:91–96. https://doi.org/10.1016/j.physb.2019.02.038

    Article  CAS  Google Scholar 

  26. Al-Dharob MH, Lapa HE, Kökce A et al (2018) The investigation of current-conduction mechanisms (CCMs) in Au/ (0.07Zn-PVA)/n-4H-SiC (MPS) Schottky diodes (SDs) by using (I-V-T) measurements. Mater Sci Semicond Process 85:98–105. https://doi.org/10.1016/J.MSSP.2018.05.032

    Article  CAS  Google Scholar 

  27. Liu X, Jeong KS, Williams BP et al (2013) Tuning the dielectric properties of organic semiconductors via salt doping. J Phys Chem B 117:15866–15874. https://doi.org/10.1021/jp408537p

    Article  CAS  PubMed  Google Scholar 

  28. Orak I, Ürel M, Bakan G, Dana A (2015) Memristive behavior in a junctionless flash memory cell. Appl Phys Lett 106:233506. https://doi.org/10.1063/1.4922624

    Article  CAS  Google Scholar 

  29. Şafak Asar Y, Asar T, Altındal Ş, Özçelik S (2015) Dielectric spectroscopy studies and ac electrical conductivity on (AuZn)/TiO 2 /p-GaAs(110) MIS structures. Philos Mag 95:2885–2898. https://doi.org/10.1080/14786435.2015.1081301

    Article  CAS  Google Scholar 

  30. Sato H, Minami T, Takata S, Yamada T (1993) Transparent conducting p-type NiO thin films prepared by magnetron sputtering. Thin Solid Films 236:27–31. https://doi.org/10.1016/0040-6090(93)90636-4

    Article  CAS  Google Scholar 

  31. Xuping Z, Guoping C (1997) The microstructure and electrochromic properties of nickel oxide films deposited with different substrate temperatures. Thin Solid Films 298:53–56. https://doi.org/10.1016/S0040-6090(96)09110-9

    Article  Google Scholar 

  32. Soleimanpour AM, Khare SV, Jayatissa AH (2012) Enhancement of Hydrogen Gas Sensing of Nanocrystalline Nickel Oxide by Pulsed-Laser Irradiation. ACS Appl Mater Interfaces 4:4651–4657. https://doi.org/10.1021/am301024a

    Article  CAS  PubMed  Google Scholar 

  33. Orak I, Kocyigit A, Alindal S (2017) Electrical and dielectric characterization of Au/ZnO/n-Si device depending frequency and voltage. Chinese Phys B 26. https://doi.org/10.1088/1674-1056/26/2/028102

  34. Zhang QL, Yang ZM, Ding BJ (2009) Synthesis of Cerium Oxide Nanoparticles by the Precipitation Method. Mater Sci Forum 610–613:233–238. https://doi.org/10.4028/www.scientific.net/MSF.610-613.233

    Article  Google Scholar 

  35. Schmidt-Mende L, MacManus-Driscoll JL (2007) ZnO – nanostructures, defects, and devices. Mater Today 10:40–48. https://doi.org/10.1016/S1369-7021(07)70078-0

    Article  CAS  Google Scholar 

  36. Zhang Y, Ram MK, Stefanakos EK, Goswami DY (2012) Synthesis, Characterization, and Applications of ZnO Nanowires. J Nanomater 2012:1–22. https://doi.org/10.1155/2012/624520

    Article  CAS  Google Scholar 

  37. Demirezen S, Çetinkaya HG, Kara M et al (2021) Synthesis, electrical and photo-sensing characteristics of the Al/(PCBM/NiO: ZnO)/p-Si nanocomposite structures. Sensors Actuators A Phys 317:112449. https://doi.org/10.1016/j.sna.2020.112449

    Article  CAS  Google Scholar 

  38. Uluşan AB, Tataroğlu A (2018) Frequency-Dependent Dielectric Parameters of Au/TiO2/n-Si (MIS) Structure. Silicon 10:2071–2077. https://doi.org/10.1007/s12633-017-9722-y

    Article  CAS  Google Scholar 

  39. Kao KC (2004) Electric Polarization and Relaxation. In: Dielectric Phenomena in Solids. Elsevier, pp 41–114

  40. Karataş Ş (2008) Studies on electrical and the dielectric properties in MS structures. J Non Cryst Solids 354:3606–3611. https://doi.org/10.1016/J.JNONCRYSOL.2008.03.028

    Article  Google Scholar 

  41. Yıldırım M, Koçyiğit A (2020) A systematic study on the dielectric relaxation, electric modulus and electrical conductivity of Al/Cu:TiO2∕n-Si (MOS) structures/capacitors. Surf Rev Lett 27:1950217. https://doi.org/10.1142/S0218625X19502172

    Article  Google Scholar 

  42. Subba Reddy CV, Han X, Zhu Q-Y et al (2006) Dielectric spectroscopy studies on (PVP+PVA) polyblend film. Microelectron Eng 83:281–285. https://doi.org/10.1016/j.mee.2005.08.010

    Article  CAS  Google Scholar 

  43. More S, Dhokne R, Moharil S (2017) Dielectric relaxation and electric modulus of polyvinyl alcohol–Zinc oxide composite films. Mater Res Express 4:055302. https://doi.org/10.1088/2053-1591/aa6b26

    Article  CAS  Google Scholar 

  44. Lapa HE, Kökce A, Aldemir DA et al (2020) The interfacial properties of Au/n-4H-SiC structure with (Zn-doped PVA) interfacial layer. Phys Scr 95:115809. https://doi.org/10.1088/1402-4896/abc03a

    Article  CAS  Google Scholar 

  45. Demirezen S, Kaya A, Yerişkin SA et al (2016) Frequency and voltage dependent profile of dielectric properties, electric modulus and ac electrical conductivity in the PrBaCoO nanofiber capacitors. Results Phys 6:180–185. https://doi.org/10.1016/j.rinp.2016.03.003

    Article  Google Scholar 

  46. Altındal Yerişkin S, Balbaşı M, Tataroğlu A (2016) Frequency and voltage dependence of dielectric properties, complex electric modulus, and electrical conductivity in Au/7% graphene doped-PVA/n-Si (MPS) structures. J Appl Polym Sci 133. https://doi.org/10.1002/app.43827

  47. Jones BK, Santana J, McPherson M (1998) Negative capacitance effects in semiconductor diodes. Solid State Commun 107:47–50. https://doi.org/10.1016/S0038-1098(98)00162-8

    Article  CAS  Google Scholar 

  48. Champness CH, Clark WR (1990) Anomalous inductive effect in selenium Schottky diodes. Appl Phys Lett 56:1104–1106. https://doi.org/10.1063/1.102581

    Article  CAS  Google Scholar 

  49. Hench LL, West JL (1990) Principles of electronic ceramics. Willey, New York

    Google Scholar 

Download references

Acknowledgments

This work is supported by Amasya University Scientific Research Project with FMB-BAP 18-0319 project number and Gazi University Scientific Research Project with BAP.05/2019-26 project number.

Availability of Data and Materials

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Funding

This work is supported by Amasya University Scientific Research Project with FMB-BAP 18-0319 project number and Gazi University Scientific Research Project with BAP.05/2019-26 project number.

Author information

Authors and Affiliations

Authors

Contributions

Both the authors have equal contribution in formulating the problems and getting the solution.

Corresponding author

Correspondence to S. Demirezen.

Ethics declarations

The manuscript has not been published elsewhere and has not been submitted simultaneously for publication elsewhere.

Ethics Approval and Consent to Participate

This project involved a number of techniques and data analysis to evaluate the Doping rate, Interface states and Polarization Effects on Dielectric Properties, Electric Modulus, and AC Conductivity in PCBM/NiO:ZnO/p-Si Structures in Wide Frequency Range. And I agree to publish this manuscript in Journal of Silicon.

Consent for Publication

All the authors hope this work to be consider by Journal of Silicon and publishing in it.

Research Involving Human Participants and/or Animals

This article does not contain any studies with human participants or Animals performed by any of the authors.

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demirezen, S., Çetinkaya, H.G. & Altındal, Ş. Doping rate, Interface states and Polarization Effects on Dielectric Properties, Electric Modulus, and AC Conductivity in PCBM/NiO:ZnO/p-Si Structures in Wide Frequency Range. Silicon 14, 8517–8527 (2022). https://doi.org/10.1007/s12633-021-01640-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01640-0

Keywords

Navigation