Skip to main content

Advertisement

Log in

Synthesis and Enhanced Optical Characteristics of Silicon Carbide/Copper Oxide Nanostructures Doped Transparent Polymer for Optics and Photonics Nanodevices

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The present work aims to improve the optical characteristics of silicon carbide(SiC)/copper oxide(CuO) nanostructures doped polyvinyl alcohol(PVA) to use in various photonics and optoelectronic nanodevices like sensors, transistors, photocatalysis and photovoltaic cell. Results showed that the absorption of polymer was increased about 62.2% and transmission reduced about 53.8% at UV spectra region (λ = 200 nm) when the SiC/CuO nanostructures ratio reached (6 wt.%). The energy gap of PVA was decreased from 4.5 eV to 0.98 eV when the SiC/CuO nanostructures content reached (6 wt.%) which made it can be employed in many nanosemiconductors devices with few cost, flexible, excellent physical and chemical characteristics. Also, the results indicated to the optical parameters values of PVA were rise with increase in the SiC/CuO nanostructures content. Finally, the obtained results indicated to the PVA/SiC/CuO nanostructures have good optical characteristics which make it can be suitable for photonics and electronics fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Yes, the data are available.

References

  1. Alsaad AM, Ahmad AA, Qattan IA, El-Ali A-R, Al Fawares SA, Al-Bataineh QM (2021) Synthesis of optically tunable and thermally stable PMMA–PVA/CuO NPs hybrid nanocomposite thin films. Polymers 13. https://doi.org/10.3390/polym13111715

  2. Jeon I-Y, Baek J-B (2010) Nanocomposites derived from polymers and inorganic nanoparticles. Materials 3:3654–3674. https://doi.org/10.3390/ma3063654

    Article  CAS  PubMed Central  Google Scholar 

  3. Zidan HM, Abdelrazek EM, Abdelghany AM, Tarabiah AE (2019) Characterization and some physical studies of PVA/PVP filled with MWCNTs. J Mater Res Technol 8(1)

  4. Lal Meena P, Poswal K, Kumar Surela A (2021) Fabrication of ZnO/CuO hybrid nanocomposite for photocatalytic degradation of brilliant cresyl blue (BCB) dye in aqueous solutions. J Water Environ Nanotechnol 6(3):196–211. https://doi.org/10.22090/jwent.2021.03.001

    Article  CAS  Google Scholar 

  5. Padma GT, Rao TS, Mudinepalli VR (2021) Effect of copper oxide on biodegradable polymer nanocomposite thin films. Int J Eng Res Technol 10(1)

  6. Manjunath A, Irfan M, Anushree KP, Vinutha KM, Yamunarani N (2016) Synthesis and characterization of CuO nanoparticles and CuO doped PVA nanocomposites. Adv Mater Phys Chem 6:263–273. https://doi.org/10.4236/ampc.2016.610026

    Article  CAS  Google Scholar 

  7. Colston G, Myronov M (2017) Controlling the optical properties of monocrystalline 3C-SiC heteroepitaxially grown on silicon at low temperatures. Semicond Sci Technol 32:114005. https://doi.org/10.1088/1361-6641/aa8b2a

    Article  CAS  Google Scholar 

  8. Larruquert JI, Pérez-Marín AP, García-Cortés S, Marcos LR de, Aznárez JA, Méndez JA (2011) Self-consistent optical constants of SiC thin films. J Opt Soc Am A 28(11)

  9. Hashim A (2021) Fabrication and characteristics of flexible, lightweight, and low-cost pressure sensors based on PVA/SiO2/SiC nanostructures. J Mater Sci Mater Electron. https://doi.org/10.1007/s10854-020-05032-9

  10. Hashim A, Hadi A (2018) novel pressure sensors made from nanocomposites (biodegradable polymers-metal oxide nanoparticles): fabrication and characterization. Ukrain J Phys 63(8). https://doi.org/10.15407/ujpe63.8.754

  11. Panda S, Acharya B (2021) PDMS/MWCNT nanocomposites as capacitive pressure sensor and electromagnetic interference shielding materials. J Mater Sci: Mater Electron 32:16215–16229. https://doi.org/10.1007/s10854-021-06170-4

    Article  CAS  Google Scholar 

  12. Hashim A, Hadi A (2017) synthesis and characterization of novel piezoelectric and energy storage nanocomposites: biodegradable materials–magnesium oxide nanoparticles. Ukrain J Phys 62(12). https://doi.org/10.15407/ujpe62.12.1050

  13. Hashim Ahmed, Hadi Aseel (2017) A novel piezoelectric materials prepared from (carboxymethyl cellulose-starch) blend-metal oxide nanocomposites. Sensor Lett 15. https://doi.org/10.1166/sl.2017.3910

  14. Pavithra B, Prabhu SG, Nayak MM (2021) Design, development, fabrication and testing of low-cost, laser-engraved, embedded, nano-composite-based pressure sensor. ISSS J Micro Smart Syst. https://doi.org/10.1007/s41683-021-00076-3

  15. Rashid FL, Talib SM, Hadi A, Hashim A (2018) Novel of thermal energy storage and release: water/(SnO2 -TaC) and water/(SnO2 –SiC) nanofluids for environmental applications. IOP Conf Ser Mater Sci Eng 454:012113. https://doi.org/10.1088/1757-899X/454/1/012113

    Article  Google Scholar 

  16. Shareef Abbas Sahi, Rashid Farhan Lafta, Hadi Aseel, Hashim Ahmed (2019) Water-polyethylene glycol/ (SiC-WC) and (CeO2-WC)nanofluids for saving solar energy. Int J Sci Technol Res 8(11)

  17. Krishna Y, Aslfattahi N, Saidur R et al (2020) Fatty acid/metal ion composite as thermal energy storage materials. SN Appl Sci 2:798. https://doi.org/10.1007/s42452-020-2597-3

    Article  CAS  Google Scholar 

  18. Kanemoto SO, Gouthaman S, Venkatesh M et al (2021) Thermal performance of polyurethane nanocomposite from phosphorus and nitrogen-containing monomer, polyethylene glycol and polydimethylsiloxane for thermal energy storage applications. J Therm Anal Calorim 146:2435–2444. https://doi.org/10.1007/s10973-020-10478-4

    Article  CAS  Google Scholar 

  19. Hadi A, Rashid FL, Hussein HQ, Hashim A (2019) Novel of water with (CeO2-WC) and (SiC-WC) nanoparticles systems for energy storage and release applications. IOP Conf Ser Mater Sci Eng 518(3):5. https://doi.org/10.1088/1757-899X/518/3/032059

    Article  Google Scholar 

  20. Agool IR, Kadhim KJ, Hashim A, Preparation of (polyvinyl alcohol–polyethylene glycol–polyvinyl pyrrolidinone–titanium oxide nanoparticles) nanocomposites: electrical properties for energy storage and release. Int J Plast Technol 20(1). https://doi.org/10.1007/s12588-016-9144-5

  21. Chakraborty Sohini, Mathew MM, Simon R et al (2021) Antibacterial activity of polymer blend nanocomposites with the incorporation of bentonite and gold nanorods. Polym Sci Ser B 63:598–605. https://doi.org/10.1134/S1560090421050031

    Article  Google Scholar 

  22. Aida MS, Alonizan NH, Hussein MA et al (2021) facile synthesis and antibacterial activity of bioplastic membrane containing in doped ZnO/cellulose acetate nanocomposite. J Inorg Organomet Polym. https://doi.org/10.1007/s10904-021-02171-2

  23. Hashim A, Abduljalil HM, Ahmed H (2020) Fabrication and characterization of (PVA-TiO2)1-x/ SiCx nanocomposites for biomedical applications, Egypt. J Chem 63(1). https://doi.org/10.21608/EJCHEM.2019.10712.1695

  24. Ahmed H, Hashim A (2020) Fabrication of PVA/NiO/SiC nanocomposites and studying their dielectric properties for antibacterial applications, Egypt. J Chem 63(3). https://doi.org/10.21608/EJCHEM.2019.11109.1712

  25. Ahmed H, Hashim A, Abduljalil HM (2019) Analysis of structural, electrical and electronic properties of (polymer nanocomposites/ silicon carbide) for antibacterial application. Egypt J Chem 62(4):1167–1176. https://doi.org/10.21608/EJCHEM.2019.6241.1522

    Article  Google Scholar 

  26. Hamedi S, Shojaosadati SA (2021) Preparation of antibacterial ZnO NP-containing schizophyllan/bacterial cellulose nanocomposite for wound dressing. Cellulose 28:9269–9282. https://doi.org/10.1007/s10570-021-04119-8

    Article  CAS  Google Scholar 

  27. Hasanin M, Elbahnasawy MA, Shehabeldine AM et al (2021) Ecofriendly preparation of silver nanoparticles-based nanocomposite stabilized by polysaccharides with antibacterial, antifungal and antiviral activities. Biometals 34:1313–1328. https://doi.org/10.1007/s10534-021-00344-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hashim A, Agool IR, Kadhim KJ (2018) Modern developments in polymer nanocomposites for antibacterial and antimicrobial applications: a review. J Bionanosci 2(5). https://doi.org/10.1166/jbns.2018.1580

  29. Kadhim KJ, Agool IR, Hashim A (2016) Synthesis of (PVA-PEG-PVP-TiO2) nanocomposites for antibacterial application. Mater Focus 5(5). https://doi.org/10.1166/mat.2016.1371

  30. Kadhim KJ, Agool IR, Hashim A (2017) Effect of zirconium oxide nanoparticles on dielectric properties of (PVA-PEG-PVP) blend for medical application. J Adv Phys 6(2). https://doi.org/10.1166/jap.2017.1313

  31. Jilani W, Jlali A, Guermazi H (2021) Impact of CuO nanofiller on structural, optical and dielectric properties of CuO/DGEBA hybrid nanocomposites for optoelectronic devices. Opt Quant Electron 53:545. https://doi.org/10.1007/s11082-021-03200-7

    Article  CAS  Google Scholar 

  32. Bano N, Hussain I, EL-Naggar AM et al (2019) Reduced graphene oxide nanocomposites for optoelectronics applications. Appl Phys A 125:215. https://doi.org/10.1007/s00339-019-2518-8

    Article  CAS  Google Scholar 

  33. Ahmed H, Hashim A (2020) Design and characteristics of novel PVA/PEG/Y2O3 structure for optoelectronics devices. J Mol Model 26:210. https://doi.org/10.1007/s00894-020-04479-1

    Article  CAS  PubMed  Google Scholar 

  34. Hazim A, Hashim A, Abduljalil HM (2019) Analysis of structural and electronic, properties of novel (PMMA/Al2O3, PMMA/Al2O3-Ag, PMMA/ZrO2-Ag, PMMA -Ag) nanocomposites for low cost electronics and optics applications. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-019-00148-0

  35. Ahmed H, Hashim A (2021) Design of polymer/lithium fluoride new structure for renewable and electronics applications. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-021-00340-1

  36. Ahmed H, Hashim A (2020) Structural, optical and electronic properties of silicon carbide doped PVA/NiO for low cost electronics applications. Silicon. https://doi.org/10.1007/s12633-020-00543-w

  37. Hazim A, Abduljalil HM, Hashim A (2020) Structural, Spectroscopic, electronic and optical properties of novel platinum doped (PMMA/ZrO2) and (PMMA/Al2O3) nanocomposites for electronics devices. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-020-00210-2

  38. Ahmed H, Hashim A (2021) Exploring the characteristics of new structure based on silicon doped organic blend for photonics and electronics applications. Silicon. https://doi.org/10.1007/s12633-021-01258-2

  39. Ahmed H, Hashim A, Optimization G (2020) Optical and electronic characteristics of novel PVA/PEO/SiC structure for electronics applications. Silicon. https://doi.org/10.1007/s12633-020-00620-0

  40. Hazim A, Abduljalil HM, Hashim A (2020) First principles calculations of electronic, structural and optical properties of (PMMA–ZrO2–Au) and (PMMA–Al2O3–Au) nanocomposites for optoelectronics applications. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-020-00224-w

  41. Alharthi SS, Alzahrani A, Razvi MAN et al (2020) Spectroscopic and electrical properties of Ag2S/PVA nanocomposite films for visible-light optoelectronic devices. J Inorg Organomet Polym 30:3878–3885. https://doi.org/10.1007/s10904-020-01519-4

    Article  CAS  Google Scholar 

  42. Kumar S, Baruah S, Puzari A (2020) Poly(p-phenylenediamine)-based nanocomposites with metal oxide nanoparticle for optoelectronic and magneto-optic application. Polym Bull 77:441–457. https://doi.org/10.1007/s00289-019-02760-9

    Article  CAS  Google Scholar 

  43. Mohammed J, T TTC, Hafeez HY et al (2019) Lightweight SrM/CCTO/rGO nanocomposites for optoelectronics and Ku band microwave absorption. J Mater Sci: Mater Electron 30:4026–4040. https://doi.org/10.1007/s10854-019-00690-w

    Article  CAS  Google Scholar 

  44. Ahmed H, Hashim A (2021) Design and. Silicon. https://doi.org/10.1007/s12633-021-01449-x

  45. Hashim A (2021) Synthesis of SiO2/CoFe2O4 nanoparticles doped CMC: exploring the morphology and optical characteristics for photodegradation of organic dyes. J Inorg Organomet Polym Mater. https://doi.org/10.1007/s10904-020-01846-6

  46. Ahmed H, Hashim A (2020) Structure, optical, electronic and chemical characteristics of novel (PVA-CoO) structure doped with silicon carbide. Silicon. https://doi.org/10.1007/s12633-020-00723-8

  47. Vanin AI, Kumzerov YA, Solov’ev VG et al (2021) Electrical and optical properties of nanocomposites fabricated by the introduction of iodine in porous dielectric matrices. Glass Phys Chem 47:229–234. https://doi.org/10.1134/S1087659621030123

    Article  CAS  Google Scholar 

  48. Ishwarchand W, Sarakar G, Swain BP (2021) Investigation of optical properties, chemical network and electronic environments of polycaprolactone/reduced graphene oxide fiber nanocomposites. Polym Bull. https://doi.org/10.1007/s00289-021-03920-6

  49. Abass MR, Ibrahim AB, EL-Masry EH et al (2021) Optical properties enhancement for polyacrylonitrile-ball clay nanocomposite by heavy metals saturation technique. J Radioanal Nucl Chem 329:849–855. https://doi.org/10.1007/s10967-021-07844-3

    Article  CAS  Google Scholar 

  50. Ahmed H, Hashim A (2021) Exploring the design, optical and electronic characteristics of silicon doped (PS-B) new structures for electronics and renewable approaches. Silicon. https://doi.org/10.1007/s12633-021-01465-x

  51. Hashim A, Abduljalil H, Ahmed H (2019) Analysis of optical, electronic and spectroscopic properties of (Biopolymer-SiC) nanocomposites for electronics applications. Egypt J Chem. https://doi.org/10.21608/EJCHEM.2019.7154.1590

  52. Ahmed H, Hashim A (2020) Lightweight, flexible and high energies absorption property of PbO2 doped polymer blend for various renewable approaches. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-020-00244-6

  53. Abdel Maksoud MIA, Abdelhaleem S, Tawfik EK et al (2021) Tailoring the structural, thermal, photoluminescence, and optical properties of flexible PVA/Gd2O3 nanocomposite films by gamma irradiation. Appl Phys A 127:801. https://doi.org/10.1007/s00339-021-04940-9

    Article  CAS  Google Scholar 

  54. Akouibaa A, Masrour R, Jabar A et al (2021) Numerical investigation of electronic, dielectric and optical properties of CdO, SnO2/CdO and SnO2/CdO/PVP nanocomposites. Opt Quant Electron 53:681. https://doi.org/10.1007/s11082-021-03305-z

    Article  CAS  Google Scholar 

  55. Vardanjani MJ, Karevan M (2021) Design, fabrication, and characterization of thermal and optical properties of nano-composite self-cleaning smart window. Opt Quant Electron 53:600. https://doi.org/10.1007/s11082-021-03250-x

    Article  CAS  Google Scholar 

  56. Al-Aaraji N A-H, Hashim A, Hadi A, Abduljalil H M (2021) Effect of silicon carbide nanoparticles addition on structural and dielectric characteristics of PVA/CuO nanostructures for electronics devices. Silicon. https://doi.org/10.1007/s12633-021-01265-3

  57. Al-Ramadhan Z, Hashim A, Algidsawi AJK (2011) The D.C electrical properties of (PVC-Al2O3) composites. AIP Conf Proc 1400(1). https://doi.org/10.1063/1.3663109

  58. Jambaladinni S, Bhat JS (2021) Enhanced structural, optical, and electrical properties of PVP/ZnO nanocomposites. Iran J Sci Technol Trans Sci. https://doi.org/10.1007/s40995-021-01213-1

  59. Jang KS, Yeom HY, Park JW et al (2021) Morphology, electrical conductivity, and rheology of latex-based polymer/nanocarbon nanocomposites. Korea-Aust Rheol J 33:357–366. https://doi.org/10.1007/s13367-021-0028-7

    Article  Google Scholar 

  60. Momin SA, Mariatti M (2021) Thermal, electrical, and physical properties of novel phase stabilized material: hybrid plastilina nanocomposites for effective thermal management in electronics. J Mater Sci: Mater Electron. https://doi.org/10.1007/s10854-021-07248-9

  61. Khalil KD, Bashal AH, Khalafalla M, Zaki AA (2020) Synthesis, structural, dielectric and optical properties of chitosan-MgO nanocomposite. J Taibah Univ Sci 14(1):975–983. https://doi.org/10.1080/16583655.2020.1792117

    Article  Google Scholar 

  62. Abdel-Baset T, Elzayat M, Mahrous S (2016) Characterization and optical and dielectric properties of polyvinyl chloride/silica nanocomposites films. Int J Polym Sci 2016, Article ID 1707018, 13 pages, https://doi.org/10.1155/2016/1707018

  63. Ali HE, Yahia IS, Algarni H, Khairy Y (2021) Enhancing the optical absorption, conductivity, and nonlinear parameters of PVOH films by Bi-doping. New J Phys 23:043001. https://doi.org/10.1088/1367-2630/abe614

    Article  CAS  Google Scholar 

  64. Batra A, Showe A, Sampson J, Kassu A, Curley M, Arun K (2019) Fabrication and optical characterization of polyvinylidene fluoride/ neodymium oxide nanocomposite films. Open Access Library Journal 6:e5979. https://doi.org/10.4236/oalib.1105979

  65. Ghanipour M, Dorranian D (2013) Effect of Ag-nanoparticles doped in polyvinyl alcohol on the structural and optical properties of PVA films. J Nanomater 2013, Article ID 897043, 10 pages, https://doi.org/10.1155/2013/897043

  66. Soliman TS, Vshivkov SA (2019) Effect of Fe nanoparticles on the structure and optical properties of polyvinyl alcohol nanocomposite films. J Non-Crystall Solids 519. https://doi.org/10.1016/j.jnoncrysol.2019.05.028

  67. Hashim Ahmed, Hamad Zinah S (2020) Lower cost and higher UV-absorption of polyvinyl alcohol/ silica nanocomposites for potential applications. Egypt J Chem 63(2):1. https://doi.org/10.21608/EJCHEM.2019.7264.1593

    Article  Google Scholar 

  68. Rejani P, Beena B (2013) Structural and optical properties of polyindole-manganese oxide nanocomposite. Indian J Adv Chem Sci 2(3):244–248

    Google Scholar 

  69. Hashim A, Hamad ZS (2020) Synthesis of (Polymer–SnO2) nanocomposites: structural and optical properties for flexible optoelectronics applications. Nanosistemi Nanomateriali Nanotehnologii 18(4):969–981

    CAS  Google Scholar 

  70. Al-Attiyah KHH, Hashim A, Obaid SF (2019) Fabrication of novel (carboxy methyl cellulose–polyvinylpyrrolidone–polyvinyl alcohol)/lead oxide nanoparticles: structural and optical properties for gamma rays shielding applications. Int J Plast Technol 23(1). https://doi.org/10.1007/s12588-019-09228-5

  71. A. Hashim, K.H.H. Al-Attiyah, S.F. Obaid (2019) Fabrication of Novel (Biopolymer Blend-Lead Oxide Nanoparticles) Nanocomposites: Structural and Optical Properties for Low Cost Nuclear Radiation Shielding, Ukr. J Phys 64(2). https://doi.org/10.15407/ujpe64.2.157

  72. Hashim A (2021) Enhanced morphological, optical and electronic characteristics of WC NPs doped PVP/PEO for flexible and lightweight optoelectronics applications. Opt Quant Electron 53:478. https://doi.org/10.1007/s11082-021-03100-w

    Article  CAS  Google Scholar 

  73. Hazim Angham, Hashim Ahmed, Abduljalil Hayder M (2021) Fabrication of novel (PMMA-Al2O3/Ag) nanocomposites and its structural and optical properties for lightweight and low cost electronics applications. Egypt J Chem 64(1). https://doi.org/10.21608/EJCHEM.2019.18513.2144

  74. Ahmed H, Hashim A (2019) Fabrication of novel (PVA/NiO/SiC) nanocomposites, structural, electronic and optical properties for humidity sensors. Int J Sci Technol Res 8(11)

  75. Hashim A (2020) Enhanced structural, optical, and electronic properties of In2O3 and Cr2O3 nanoparticles doped polymer blend for flexible electronics and potential applications. J Inorg Organomet Polym Mater 30. https://doi.org/10.1007/s10904-020-01528-3

  76. Sangawar VS, Golchha MC (2013) Optical properties of ZnO/low density polyethylene nanocomposites. Int J Sci Res 2(7)

  77. Jebur QM, Hashim A, Habeeb MA (2019) Structural, electrical and optical properties for (polyvinyl alcohol-polyethylene oxide–magnesium oxide) nanocomposites for optoelectronics applications. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-019-00121-x

  78. Ahmed H, Hashim A, Abduljalil HM (2020) Determination of optical parameters of films of PVA/TiO2/SiC and PVA/MgO/SiC nanocomposites for optoelectronics and UV-detectors, Ukr. J Phys 65(6). https://doi.org/10.15407/ujpe65.6.533

  79. Ahmed H, Abduljalil HM, Hashim A (2019) Analysis of structural, optical and electronic properties of polymeric nanocomposites/silicon carbide for humidity sensors. Trans Electr Electron Mater. https://doi.org/10.1007/s42341-019-00100-2

  80. Hashim A, Hamad ZS (2019) Fabrication and characterization of polymer blend doped with metal carbide nanoparticles for humidity sensors. J Nanostruct 9(2):340–348. https://doi.org/10.22052/JNS.2019.02.016

    Article  CAS  Google Scholar 

  81. Gayitri HM, Al-Gunaid M, Siddaramaiah, Prakash APG (2020) Optical, structural and thermal properties of hybrid PVA/CaAl2ZrO6 nanocomposite films. Indian J Eng Mater Sci 27:320–332

    CAS  Google Scholar 

  82. Guggilla P, Chilvery A, Powell R (2017) Reducing the bandgap energy via doping process in lead-free thin film nanocomposites. Res Rev J Mater Sci 5(1). https://doi.org/10.4172/2321-6212.1000162

Download references

Acknowledgements

Acknowledgment to University of Babylon and Al-Mustaqbal University College.

Author information

Authors and Affiliations

Authors

Contributions

Noor Al-Huda Al-Aaraji, Ahmed Hashim, Aseel Hadi, Hayder M. Abduljalil.

Corresponding author

Correspondence to Ahmed Hashim.

Ethics declarations

Ethics approval (Research involving human participants, their data or biological) material.

The Research is not involving the studies on human or their data.

Consent to Participate

Consent to participate.

Consent for Publication

Consent for Publication.

Conflict of Interest

No conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Aaraji, N.AH., Hashim, A., Hadi, A. et al. Synthesis and Enhanced Optical Characteristics of Silicon Carbide/Copper Oxide Nanostructures Doped Transparent Polymer for Optics and Photonics Nanodevices. Silicon 14, 10037–10044 (2022). https://doi.org/10.1007/s12633-022-01730-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-01730-7

Keywords

Navigation