Skip to main content
Log in

Optimization of Design Space for Vertically Stacked Junctionless Nanosheet FET for Analog/RF Applications

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This paper investigates the various device dimensions such as gate length (Lg), nanosheet thickness (TNS), and nanosheet width to optimize the design space for vertically stacked Junctionless Nanosheet Field Effect Transistor (JL-NSFET). The optimization has been carried out by considering several analog/RF parameters that include On-current (ION), Off-current (IOFF), Transconductance Efficiency (gm/Id), Subthreshold Swing (SS), Drain Induced Barrier Lowering (DIBL), ION/IOFF ratio, Transconductance (gm), gate capacitance (Cgg), Output conductance (gds), and Cutoff-frequency (fT), Intrinsic gain (Av) are explored here. It is found that the downscaling of Lg from 16 nm to 8 nm resulted in an increase in SS and DIBL. However, scaling down of TNS (WNS) from 10 nm to 5 nm (from 18 nm to 10 nm) resulted in a decrease in SS by ~30.5% (~16.39%) and in DIBL by ~44.23% (~78.59%) respectively. The short channel effects (SCE) are greatly suppressed by upscaling of Lg and downscaling of TNS and WNS. The transconductance (gm) is improved by decreasing the Lg and TNS but a significant degradation is found for WNS. Further, the gain (Av) is improved by an amount of ~22.86% by upscaling the Lg and ~ 7.07%, ~31.75% with the downscaling of TNS and WNS respectively. The gate capacitances (Cgg) are reduced with the downscaling of Lg and WNS, however the same is increased for TNS. Moreover, the cutoff frequency (fT) is improved with scaling down of Lg and TNS in comparison with the WNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Yoon JS, Jeong J, Lee S, Baek RH (2018) Systematic DC/AC performance benchmarking of sub-7-nm node FinFETs and nanosheet FETs. IEEE J Electron Devices Soc 6:942–947. https://doi.org/10.1109/JEDS.2018.2866026

    Article  CAS  Google Scholar 

  2. Boukhili W, Mahdouani M, Bourguiga R, Puigdollers J (2015) Experimental study and analytical modeling of the channel length influence on the electrical characteristics of small-molecule thin-film transistors. Superlattice Microst 83:224–236. https://doi.org/10.1016/j.spmi.2015.03.045

    Article  CAS  Google Scholar 

  3. Lu YC, Hu VP (2019) Evaluation of analog circuit performance for ferroelectric SOI MOSFETs considering interface trap charges and gate length variations. 2019 silicon Nanoelectronics workshop (SNW). IEEE. https://doi.org/10.23919/SNW.2019.8782942

    Chapter  Google Scholar 

  4. Rechem D, Latreche S, Gontrand C (2009) Channel length scaling and the impact of metal gate work function on the performance of double gate-metal oxide semiconductor field-effect transistors. Pramana. 72(3):587–599. https://doi.org/10.1007/s12043-009-0052-5

    Article  CAS  Google Scholar 

  5. Minhaj EH, Esha SR, Adnan MM, Dey T (2018) Impact of channel length reduction and doping variation on multigate FinFETs. 2018 international conference on advancement in electrical and electronic engineering (ICAEEE) IEEE. https://doi.org/10.1109/ICAEEE.2018.8642981

    Chapter  Google Scholar 

  6. Swain SK, Dutta A, Adak S, Pati SK, Sarkar CK (2016) Influence of channel length and high-K oxide thickness on subthreshold analog/RF performance of graded channel and gate stack DG-MOSFETs. Microelectron Reliab 61:24–29. https://doi.org/10.1016/j.microrel.2016.03.001

    Article  CAS  Google Scholar 

  7. Venkataiah C, Satya-Prakash VN, Mallikarjuna K, Prasad TJ (2019) Investigating the effect of chirality, oxide thickness, temperature and channel length variation on a threshold voltage of MOSFET, GNRFET, and CNTFET. J Mech Continua Math Sci. https://doi.org/10.26782/jmcms.spl.3/2019.09.00018

  8. Baruah RK, Paily RP. Estimation of process-induced variations in double-gate junctionless transistor (2012) In 2012 5th International Conference on Computers and Devices for Communication (CODEC) IEEE. https://doi.org/10.1109/CODEC.2012.6509298

  9. Tayal S, Vibhu G, Meena S, Gupta R (2021) Optimization of device dimensions of high-k gate dielectric based DG-TFET for improved analog/RF performance. Silicon 3:1–7. https://doi.org/10.1007/s12633-021-01127-y

    Article  CAS  Google Scholar 

  10. Park C, Song Y, Kang JH, Jung SO, Yun I (2011) Effects of electrical characteristics on the non-rectangular gate structure variations for the multifinger MOSFETs. IEEE Trans Compon Packag Manuf Technol 1(3):352–358. https://doi.org/10.1109/TCPMT.2010.2099532

    Article  CAS  Google Scholar 

  11. Tayal S, Ajayan J, Joseph LL, Tarunkumar J, Nirmal D, Jena B, Nandi A (2021) A comprehensive investigation of vertically stacked silicon nanosheet field effect transistors: an analog/RF perspective. Silicon. 4:1–8. https://doi.org/10.1007/s12633-021-01128-x

    Article  CAS  Google Scholar 

  12. Saha JK, Chakma N, Hasan M (2018) Impact of channel length, gate insulator thickness, gate insulator material, and temperature on the performance of nanoscale FETs. J Comput Electron 17(4):1521–1527. https://doi.org/10.1007/s10825-018-1235-4

    Article  CAS  Google Scholar 

  13. Loubet N, Hook T, Montanini P, Yeung CW, Kanakasabapathy S, Guillom M, Yamashita T, Zhang J, Miao X, Wang J, Young A (2017) Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET. 2017 symposium on VLSI technology IEEE. https://doi.org/10.23919/VLSIT.2017.7998183

    Chapter  Google Scholar 

  14. Yeung CW, Zhang J, Chao R, Kwon O, Vega R, Tsutsui G, Miao X, Zhang C, Sohn CW, Moon BK, Razavieh A (2018) Channel geometry impact and narrow sheet effect of stacked nanosheet. 2018 IEEE International Electron Devices Meeting (IEDM) IEEE. https://doi.org/10.1109/IEDM.2018.8614608

    Chapter  Google Scholar 

  15. Mohapatra SK, Pradhan KP, Artola L, Sahu PK (2015) Estimation of analog/RF figures-of-merit using device design engineering in gate stack double gate MOSFET. Mater Sci Semicond Process 31:455–462. https://doi.org/10.1016/j.mssp.2014.12.026

    Article  CAS  Google Scholar 

  16. Sakib FI, Hasan MA, Hossain M (2020) Exploration of negative capacitance in gate-all-around si nanosheet transistors. IEEE Trans Electron Devices 67(11):5236–5242. https://doi.org/10.1109/TED.2020.3025524

    Article  CAS  Google Scholar 

  17. Nagy D, Espineira G, Indalecio G, Garcia-Loureiro AJ, Kalna K, Seoane N (2020) Benchmarking of FinFET, nanosheet, and nanowire FET architectures for future technology nodes. IEEE Access 8:53196–53202. https://doi.org/10.1109/ACCESS.2020.2980925

    Article  Google Scholar 

  18. Nuttinck S, Parvais B, Curatola G, Mercha A (2007) Double-gate FinFETs as a CMOS technology downscaling option: an RF perspective. IEEE Trans Electron Devices 54(2):279–283. https://doi.org/10.1109/TED.2006.888670

    Article  CAS  Google Scholar 

  19. Yoon JS, Jeong J, Lee S, Baek RH (2019) Punch-through-stopper free nanosheet FETs with crescent inner-spacer and isolated source/drain. IEEE Access 7:38593–38596. https://doi.org/10.1109/ACCESS.2019.2904944

    Article  Google Scholar 

  20. Tayal S, Mittal V, Jadav S, Gupta S, Nandi A, Krishan B (2020) Temperature sensitivity analysis of inner-gate engineered JL-SiNT-FET: an analog/RF prospective. Cryogenics. 108:103087. https://doi.org/10.1016/j.cryogenics.2020.103087

    Article  CAS  Google Scholar 

  21. Tayal S, Nandi A (2018) Study of temperature effect on junctionless Si nanotube FET concerning analog/RF performance. Cryogenics. 92:71–75. https://doi.org/10.1016/j.cryogenics.2018.03.012

    Article  CAS  Google Scholar 

  22. Dixit A, Kottantharayil A, Collaert N, Goodwin M, Jurczak M, De Meyer K (2005) Analysis of the parasitic S/D resistance in multiple-gate FETs. IEEE Trans Electron Devices 52(6):1132–1140. https://doi.org/10.1109/TED.2005.848098

    Article  CAS  Google Scholar 

  23. Yakimets D, Bardon MG, Jang D, Schuddinck P, Sherazi Y, Weckx P, Miyaguchi K, Parvais B, Raghavan P, Spessot A, Verkest D (2017) Power aware FinFET and lateral nanosheet FET targeting for 3nm CMOS technology. 2017 IEEE international Electron devices meeting (IEDM) IEEE. https://doi.org/10.1109/IEDM.2017.8268429

    Chapter  Google Scholar 

  24. Tayal S, Nandi A (2018) Optimization of gate-stack in junctionless Si-nanotube FET for analog/RF applications. Mater Sci Semicond Process 80:63–67. https://doi.org/10.1016/j.mssp.2018.02.014

    Article  CAS  Google Scholar 

  25. Zhang Q, Gu J, Xu R, Cao L, Li J, Wu Z, Wang G, Yao J, Zhang Z, Xiang J, He X (2021) Optimization of structure and electrical characteristics for four-layer vertically-stacked horizontal gate-all-around Si nanosheets devices. Nanomaterials. 11(3):646. https://doi.org/10.3390/nano11030646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chu CL, Wu K, Luo GL, Chen BY, Chen SH, Wu WF, Yeh WK (2018) Stacked Ge-nanosheet GAAFETs fabricated by Ge/Si multilayer epitaxy. IEEE Electron Device Lett 39(8):1133–1136. https://doi.org/10.1109/LED.2018.2850366

    Article  CAS  Google Scholar 

  27. Jena B, Bhol K, Nanda U, Tayal S, Routray SR (2021) Performance analysis of ferroelectric GAA MOSFET with metal grain work function variability. Silicon. https://doi.org/10.1007/s12633-021-01031-5

  28. Tayal S, Bhattacharya S, Jena B, Ajayan J, Muchahary D (2021) Singla P. Linearity Performance and Harmonic Distortion Analysis of IGE Junctionless Silicon Nanotube-FET for Wireless Applications Silicon https://doi.org/10.1007/s12633-021-01313-y

  29. Yao J, Li J, Luo K, Yu J, Zhang Q, Hou Z, Gu J, Yang W, Wu Z, Yin H, Wang W (2018) Physical insights on quantum confinement and carrier mobility in Si, Si0.45 Ge0.55, Ge gate-all-around NSFET for 5 nm technology node. IEEE J Electron Devices Soc 6:841–848. https://doi.org/10.1109/JEDS.2018.2858225

    Article  CAS  Google Scholar 

  30. Yoon JS, Jeong J, Lee S, Baek RH (2019) Sensitivity of source/drain critical dimension variations for sub-5-nm node fin and nanosheet FETs. IEEE Trans Electron Devices 67(1):258–262. https://doi.org/10.1109/TED.2019.2951671

    Article  Google Scholar 

  31. Sreenivasulu VB, Narendar V (2021) Characterization and optimization of junctionless gate-all-around vertically stacked nanowire FETs for sub-5 nm technology nodes. Microelectron J 116:105214. https://doi.org/10.1016/j.mejo.2021.105214

    Article  CAS  Google Scholar 

  32. Jegadheesan V, Sivasankaran K, Konar A (2020) Optimized substrate for improved performance of stacked Nanosheet field-effect transistor. IEEE Trans Electron Devices 67(10):4079–4084. https://doi.org/10.1109/TED.2020.3017175

    Article  CAS  Google Scholar 

  33. Jang D, Yakimets D, Eneman G, Schuddinck P, Bardon MG, Raghavan P, Spessot A, Verkest D, Mocuta A (2017) Device exploration of nanosheet transistors for sub-7-nm technology node. IEEE Trans Electron Devices 64(6):2707–2713. https://doi.org/10.1109/TED.2017.2695455

    Article  CAS  Google Scholar 

  34. Dasgupta A, Parihar SS, Agarwal H, Kushwaha P, Chauhan YS, Hu C (2020) Compact model for geometry dependent mobility in nanosheet FETs. IEEE Electron Device Lett 41(3):313–316. https://doi.org/10.1109/LED.2020.2967782

    Article  CAS  Google Scholar 

  35. Narula V, Narula C, Singh J (2015) Investigating short channel effects and performance parameters of double gate junctionless transistor at various technology nodes. 2015 2nd international conference on recent advances in Engineering & Computational Sciences (RAECS) IEEE. https://doi.org/10.1109/RAECS.2015.7453429

    Chapter  Google Scholar 

  36. Yoo C, Chang J, Seon Y, Kim H, Jeon J (2022) Analysis of self-heating effects in multi-nanosheet FET considering bottom isolation and package options. IEEE Trans Electron Devices 69:1524–1531. https://doi.org/10.1109/TED.2022.3141327

    Article  Google Scholar 

  37. Sudarsanan A, Badami O, Nayak K (2022) Superior interface trap variability immunity of horizontally stacked Si nanosheet FET in Sub-3-nm technology node. 2021 International semiconductor conference (CAS). IEEE. https://doi.org/10.1109/CAS52836.2021.9604183

    Chapter  Google Scholar 

  38. Jung SG, Kim JK, Yu HY (2022) Analytical model of contact resistance in vertically stacked nanosheet FETs for Sub-3-nm technology node. IEEE Trans Electron Devices 69:930–935. https://doi.org/10.1109/TED.2022.3143473

    Article  CAS  Google Scholar 

  39. Tayal S, Gupta S, Nandi A, Gupta A, Jadav S (2019) Study of inner-gate engineering effect on analog/radio frequency performance of conventional Si-nanotube field effect transistor. J Nanoelectron Optoelectron 14(7):953–957. https://doi.org/10.1166/jno.2019.2649

    Article  CAS  Google Scholar 

  40. Jegadheesan V, Sivasankaran K, Konar A (2019) Impact of geometrical parameters and substrate on analog/RF performance of stacked nanosheet field effect transistor. Mater Sci Semicond Process 93:188–195. https://doi.org/10.1016/j.mssp.2019.01.003

    Article  CAS  Google Scholar 

  41. Sentaurus Device User Guide. Available: http://www.synopsys.com

  42. Veloso A, Huynh-Bao T, Matagne P, Jang D, Eneman G, Horiguchi N, Ryckaert J (2020) Nanowire & nanosheet FETs for ultra-scaled, high-density logic and memory applications. Solid State Electron 168:107736. https://doi.org/10.1109/EUROSOIULIS45800.2019.9041857

    Article  CAS  Google Scholar 

  43. Venkateswarlu S, Nayak K (2020) Hetero-interfacial thermal resistance effects on device performance of stacked gate-all-around nanosheet FET. IEEE Trans Electron Devices 67(10):4493–4499. https://doi.org/10.1109/TED.2020.3017567

    Article  CAS  Google Scholar 

  44. Yoon JS, Jeong J, Lee S, Baek RH (2019) Metal source−/drain-induced performance boosting of sub-7-nm node nanosheet FETs. IEEE Trans Electron Devices 66(4):1868–1873. https://doi.org/10.1109/TED.2019.2897873

    Article  CAS  Google Scholar 

  45. Tayal S, Nandi A (2017) Effect of FIBL in-conjunction with channel parameters on analog and RF FOM of FinFET. Superlattice Microst 105:152–162. https://doi.org/10.1016/j.spmi.2017.03.018

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Sayan Kanungo, BITS Pilani, Hyderabad Campus for providing us the facility to simulate this work using Sentaurus TCAD tools.

Code Availability

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All the works (Conceptualization, Methodology, Writing Original Draft, Software, Validation and Investigation, Formal analysis, Resources, Data Curation, Writing Review and Editing) in this paper have done together by Sresta Valasa, Shubham Tayal, Laxman Raju Thoutam.

Corresponding author

Correspondence to Sresta Valasa.

Ethics declarations

The contents of this manuscript are not now under consideration for publication elsewhere. The contents of this manuscript have not been copyrighted or published previously. The contents of this manuscript will not be copyrighted, submitted, or published elsewhere, while acceptance by the Journal is under consideration.

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable as the manuscript does not contain any data from individual. Conflicts of Interest/Competing Interests The authors declare that there is no conflict of interest reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valasa, S., Tayal, S. & Thoutam, L.R. Optimization of Design Space for Vertically Stacked Junctionless Nanosheet FET for Analog/RF Applications. Silicon 14, 10347–10356 (2022). https://doi.org/10.1007/s12633-022-01793-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-01793-6

Keywords

Navigation