Skip to main content

Advertisement

Log in

Non-hypoxic Stabilization of Hypoxia-Inducible Factor Alpha (HIF-α): Relevance in Neural Progenitor/Stem Cells

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Hypoxia-inducible factor-1 (HIF-1) plays an important role in neural progenitor cell (NPC) propagation and dopaminergic differentiation. In the presence of oxygen and iron, hypoxia-inducible factor 1 alpha (HIF-1α) is rapidly degraded via the prolyl hydroxylase (PHD)/VHL pathway. In addition to hypoxia, various non-hypoxic stimuli can stabilize HIF-1α in NPCs and influence the transcription of HIF-regulated genes. Here, we investigate various hypoxia mimetics: deferoxamine (DFO), ciclopirox olamine (CPX), dimethyloxallyl glycine (DMOG), a novel HIF-PHD inhibitor (FG-4497) and cobalt chloride (CoCl2) with respect to their ability to enhance in vitro proliferation, neurogenesis and dopaminergic differentiation of human fetal mesencephalic NPCs (hmNPCs) in ambient oxygen (21%). Although able to stabilize HIF-1α, iron chelators (DFO and CPX) and DMOG were toxic to hmNPCs. CoCl2 was beneficial only towards neuronal and dopaminergic differentiation, while FG-4497 enhanced proliferation, neurogenesis and dopaminergic differentiation of hmNPCs. Both CoCl2 and FG-4497 were protective to human dopaminergic neurons. Finally, exposure to hyperbaric oxygen (HBO) also stabilized HIF-1α in hmNPCs and induced neurogenesis in vitro. These findings suggest that several HIF stabilizing agents or conditions can rescue impaired neurons and promote neurogenesis in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

CPX:

Ciclopirox olamine

DA:

Dopamine

DAPI:

6′-Diamidino-2-phenylindole

DAT:

Dopamine transporter

DCX:

Doublecortin

DFO:

Deferoxamine mesylate

DMOG:

Dimethyloxallyl glycine

EGF:

Epidermal growth factor

EPO:

Erythropoietin

FCS:

Fetal calf serum

FGF-2:

Fibroblast growth factor 2

GFAP:

Glial fibrillary acidic protein

HBO:

Hyperbaric oxygen

HEK:

Human embryonic kidney

HIF-1α:

Hypoxia-inducible factor-1α

hmNPCs:

Human mesencephalic neural progenitor cells

hfNPCs:

Human frontal (cortical) neural progenitor cells

MAP2ab:

Microtubule associated protein-2

MPP+ :

1-Methyl-4-phenylpyridinium

MTT:

3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium

NSE:

Neuron-specific enolase

PHD:

Prolyl 4-hydroxylase domain

PHI:

PHD inhibitor

TH:

Tyrosine hydroxylase

TUJ1:

Neuronal class III β-tubulin

VEGF:

Vascular endothelial growth factor

pVHL:

von Hippel–Lindau tumour suppressor protein

References

  • Bruick RK, McKnight SL (2001) A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294:1337–1340

    Article  PubMed  CAS  Google Scholar 

  • Brunelle JK, Bell EL, Quesada NM, Vercauteren K, Tiranti V, Zeviani M, Scarpulla RC, Chandel NS (2005) Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab 1:409–414

    Article  PubMed  CAS  Google Scholar 

  • Chachami G, Simos G, Hatziefthimiou A, Bonanou S, Molyvdas PA, Paraskeva E (2004) Cobalt induces hypoxia-inducible factor-1alpha expression in airway smooth muscle cells by a reactive oxygen species- and PI3K-dependent mechanism. Am J Respir Cell Mol Biol 31:544–551

    Article  PubMed  CAS  Google Scholar 

  • Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT (1998) Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci USA 95:11715–11720

    Article  PubMed  CAS  Google Scholar 

  • Chen HL, Pistollato F, Hoeppner DJ, Ni HT, McKay RDG, Panchision DM (2007a) Oxygen tension regulates survival and fate of mouse central nervous system precursors at multiple levels. Stem Cells 25:2291–2301

    Article  PubMed  Google Scholar 

  • Chen ZY, Asavaritikrai P, Prchal JT, Noguchi CT (2007b) Endogenous erythropoietin signaling is required for normal neural progenitor cell proliferation. J Biol Chem 282:25875–25883

    Article  PubMed  CAS  Google Scholar 

  • Csete M, Rodriguez L, Wilcox M, Chadalavada S (2004) Erythropoietin receptor is expressed on adult rat dopaminergic neurons and erythropoietin is neurotrophic in cultured dopaminergic neuroblasts. Neurosci Lett 359:124–126

    Article  PubMed  CAS  Google Scholar 

  • Danet GH, Pan Y, Luongo JL, Bonnet DA, Simon MC (2003) Expansion of human SCID-repopulating cells under hypoxic conditions. J Clin Invest 112:126–135

    PubMed  CAS  Google Scholar 

  • Demers EJ, McPherson RJ, Juul SE (2005) Erythropoietin protects dopaminergic neurons and improves neurobehavioral outcomes in juvenile rats after neonatal hypoxia-ischemia. Pediatr Res 58:297–301

    Article  PubMed  CAS  Google Scholar 

  • Goldberg M, Dunning S, Bunn H (1988) Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science 242:1412–1415

    Article  PubMed  CAS  Google Scholar 

  • Grayson WL, Zhao F, Izadpanah R, Bunnell B, Ma T (2006) Effects of hypoxia on human mesenchymal stem cell expansion and plasticity in 3D constructs. J Cell Physiol 207:331–339

    Article  PubMed  CAS  Google Scholar 

  • Guzy RD, Schumacker PT (2006) Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol 91:807–819

    Article  PubMed  CAS  Google Scholar 

  • Hsieh MM, Linde NS, Wynter A, Metzger M, Wong C, Langsetmo I, Lin A, Smith R, Rodgers GP, Donahue RE, Klaus SJ, Tisdale JF (2007) HIF prolyl hydroxylase inhibition results in endogenous erythropoietin induction, erythrocytosis, and modest fetal hemoglobin expression in rhesus macaques. Blood 110:2140–2147

    Article  PubMed  CAS  Google Scholar 

  • Hu X, Yu SP, Fraser JL, Lu Z, Ogle ME, Wang J-A, Wei L (2008) Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J Thorac Cardiovasc Surg 135:799–808

    Article  PubMed  CAS  Google Scholar 

  • Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG (2001) HIF alpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292:464–468

    Article  PubMed  CAS  Google Scholar 

  • Ivanovic Z, Dello Sbarba P, Trimoreau F, Faucher JL, Praloran V (2000) Primitive human HPCs are better maintained and expanded in vitro at 1 percent oxygen than at 20 percent. Transfusion 40:1482–1488

    Article  PubMed  CAS  Google Scholar 

  • Jaakkola P (2001) Targeting of HIF-alpha to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468–472

    Article  PubMed  CAS  Google Scholar 

  • Jin KL, Mao XO, Greenberg DA (2000) Vascular endothelial growth factor: direct neuroprotective effect in in vitro ischemia. Proc Natl Acad Sci USA 97:10242–10247

    Article  PubMed  CAS  Google Scholar 

  • Jin K, Zhu Y, Sun Y, Mao XO, Xie L, Greenberg DA (2002) Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci USA 99:11946–11950

    Article  PubMed  CAS  Google Scholar 

  • Jung TW, Lee JY, Shim WS, Kang ES, Kim SK, Ahn CW, Lee HC, Cha BS (2007) Rosiglitazone protects human neuroblastoma SH-SY5Y cells against MPP+ induced cytotoxicity via inhibition of mitochondrial dysfunction and ROS production. J Neurol Sci 253:53–60

    Article  PubMed  CAS  Google Scholar 

  • Kilic E, Kilic U, Soliz J, Bassetti CL, Gassmann M, Hermann DM (2005) Brain-derived erythropoietin protects from focal cerebral ischemia by dual activation of ERK-1/-2 and Akt pathways. FASEB J 19:2026–2028

    PubMed  CAS  Google Scholar 

  • Kim TS, Misumi S, Jung CG, Masuda T, Isobe Y, Furuyama F, Nishino H, Hida H (2008) Increase in dopaminergic neurons from mouse embryonic stem cell-derived neural progenitor/stem cells is mediated by hypoxia inducible factor-1alpha. J Neurosci Res 86:2353–2362

    Article  PubMed  CAS  Google Scholar 

  • Kotake-Nara E, Takizawa S, Quan J, Wang H, Saida K (2005) Cobalt chloride induces neurite outgrowth in rat pheochromocytoma PC-12 cells through regulation of endothelin-2/vasoactive intestinal contractor. J Neurosci Res 81:563–571

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Narasimhan P, Yu F, Chan PH (2005) Neuroprotection by hypoxic preconditioning involves oxidative stress-mediated expression of hypoxia-inducible factor and erythropoietin. Stroke 36:1264–1269

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Lazaro M (2006) HIF-1: hypoxia-inducible factor or dysoxia-inducible factor? FASEB J 20:828–832

    Article  PubMed  CAS  Google Scholar 

  • Lovejoy DB, Richardson DR (2002) Novel “hybrid” iron chelators derived from aroylhydrazones and thiosemicarbazones demonstrate selective antiproliferative activity against tumor cells. Blood 100:666–676

    Article  PubMed  CAS  Google Scholar 

  • Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–275

    Article  PubMed  CAS  Google Scholar 

  • Milosevic J, Schwarz SC, Krohn K, Poppe M, Storch A, Schwarz J (2005) Low atmospheric oxygen avoids maturation, senescence and cell death of murine mesencephalic neural precursors. J Neurochem 92:718–729

    Article  PubMed  CAS  Google Scholar 

  • Milosevic J, Brandt A, Roemuss U, Arnold A, Wegner F, Schwarz SC, Storch A, Zimmermann H, Schwarz J (2006) Uracil nucleotides stimulate human neural precursor cell proliferation and dopaminergic differentiation: involvement of MEK/ERK signalling. J Neurochem 99:913–923

    Article  PubMed  CAS  Google Scholar 

  • Milosevic J, Maisel M, Wegner F, Leuchtenberger J, Wenger RH, Gerlach M, Storch A, Schwarz J (2007a) Lack of hypoxia-inducible factor-1 alpha impairs midbrain neural precursor cells involving vascular endothelial growth factor signaling. J Neurosci 27:412–421

    Article  PubMed  CAS  Google Scholar 

  • Milosevic J, Schwarz SC, Maisel M, Poppe-Wagner M, Dieterlen MT, Storch A, Schwarz J (2007b) Dopamine D2/D3 receptor stimulation fails to promote dopaminergic neurogenesis of murine and human midbrain-derived neural precursor cells in vitro. Stem Cells Dev 16:625–635

    Article  PubMed  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  • Nicoletti I, Migliorati G, Pagliacci M, Grignani F, Riccardi C (1991) A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139:271–279

    Article  PubMed  CAS  Google Scholar 

  • Pacary E, Legros H, Valable S, Duchatelle P, Lecocq M, Petit E, Nicole O, Bernaudin M (2006) Synergistic effects of CoCl2 and ROCK inhibition on mesenchymal stem cell differentiation into neuron-like cells. J Cell Sci 119:2667–2678

    Article  PubMed  CAS  Google Scholar 

  • Pacary E, Tixier E, Coulet F, Roussel S, Petit E, Bernaudin M (2007) Crosstalk between HIF-1 and ROCK pathways in neuronal differentiation of mesenchymal stem cells, neurospheres and in PC12 neurite outgrowth. Mol Cell Neurosci 35:409–423

    Article  PubMed  CAS  Google Scholar 

  • Parmar K, Mauch P, Vergilio JA, Sackstein R, Down JD (2007) Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci USA 104:5431–5436

    Article  PubMed  CAS  Google Scholar 

  • Pasha Z, Wang Y, Sheikh R, Zhang D, Zhao T, Ashraf M (2008) Preconditioning enhances cell survival and differentiation of stem cells during transplantation in infarcted myocardium. Cardiovasc Res 77:134–142

    Article  PubMed  CAS  Google Scholar 

  • Prass K, Scharff A, Ruscher K, Lowl D, Muselmann C, Victorov I, Kapinya K, Dirnagl U, Meisel A (2003) Hypoxia-induced stroke tolerance in the mouse is mediated by erythropoietin. Stroke 34:1981–1986

    Article  PubMed  CAS  Google Scholar 

  • Robinson A, Keely S, Karhausen J, Gerich ME, Furuta GT, Colgan SP (2008) Mucosal protection by hypoxia-inducible factor prolyl hydroxylase inhibition. Gastroenterology 134:145–155

    Article  PubMed  CAS  Google Scholar 

  • Rosenberger C, Rosen S, Shina A, Frei U, Eckardt KU, Flippin LA, Arend M, Klaus SJ, Heyman SN (2008) Activation of hypoxia inducible factors (HIF) ameliorates hypoxic distal tubular injury in the isolated perfused rat kidney. Nephrol Dial Transplant 23:3472–3478

    Article  PubMed  CAS  Google Scholar 

  • Sabolek M, Mieskes I, Lenk T, Lehmensiek V, Hermann A, Schwarz J, Storch A (2008) Stage-dependent vulnerability of fetal mesencephalic neuroprogenitors towards dopaminergic neurotoxins. Neurotoxicology 29:714–721

    Article  PubMed  CAS  Google Scholar 

  • Sanders SP, Zweier JL, Kuppusamy P, Harrison SJ, Bassett DJ, Gabrielson EW, Sylvester JT (1993) Hyperoxic sheep pulmonary microvascular endothelial cells generate free radicals via mitochondrial electron transport. J Clin Invest 91:46–52

    Article  PubMed  CAS  Google Scholar 

  • Schaenzer A, Wachs F, Wilhelm D, Acker T, Cooper-Kuhn C, Beck H, Winkler J, Aigner L, Plate K, Kuhn HG (2004) Direct stimulation of adult neural stem cells in vitro and neurogenesis in vivo by vascular endothelial growth factor. Brain Pathol 14:237–248

    Article  CAS  Google Scholar 

  • Schwarz J, Schwarz SC, Storch A (2006) Developmental perspectives on human midbrain-derived neural stem cells. Neurodegener Dis 3:45–49

    Article  PubMed  Google Scholar 

  • Semenza GL (2000) HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 88:1474–1480

    PubMed  CAS  Google Scholar 

  • Siddiq A, Ayoub IA, Chavez JC, Aminova L, Shah S, LaManna JC, Patton SM, Connor JR, Cherny RA, Volitakis I, Bush AI, Langsetmo I, Seeley T, Gunzler V, Ratan RR (2005) Hypoxia-inducible factor prolyl 4-hydroxylase inhibition: a target for neuroprotection in the central nervous system. J Biol Chem 280:41732–41743

    Article  PubMed  CAS  Google Scholar 

  • Storch A, Ludolph AC, Schwarz J (1999) HEK-293 cells expressing the human dopamine transporter are susceptible to low concentrations of 1-methyl-4-phenylpyridine (MPP+) via impairment of energy metabolism. Neurochem Int 35:393–403

    Article  PubMed  CAS  Google Scholar 

  • Storch A, Paul G, Csete M, Boehm BO, Carvey PM, Kupsch A, Schwarz J (2001) Long-term proliferation and dopaminergic differentiation of human mesencephalic neural precursor cells. Exp Neurol 170:317–325

    Article  PubMed  CAS  Google Scholar 

  • Studer L, Csete M, Lee SH, Kabbani N, Walikonis J, Wold B, McKay R (2000) Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. J Neurosci 20:7377–7383

    PubMed  CAS  Google Scholar 

  • Theus MH, Wei L, Cui L, Francis K, Hu X, Keogh C, Yu SP (2008) In vitro hypoxic preconditioning of embryonic stem cells as a strategy of promoting cell survival and functional benefits after transplantation into the ischemic rat brain. Exp Neurol 210:656–670

    Article  PubMed  CAS  Google Scholar 

  • Tsai PT, Ohab JJ, Kertesz N, Groszer M, Matter C, Gao J, Liu X, Wu H, Carmichael ST (2006) A critical role of erythropoietin receptor in neurogenesis and post-stroke recovery. J Neurosci 26:1269–1274

    Article  PubMed  CAS  Google Scholar 

  • Wenger RH, Stiehl DP, G Camenisch (2005) Integration of oxygen signaling at the consensus HRE. Sci STKE 2005(306):re12

  • Won YJ, Yoo JY, Lee JH, Hwang SJ, Kim D, Hong HN (2007) Erythropoietin is neuroprotective on GABAergic neurons against kainic acid-excitotoxicity in the rat spinal cell cultures. Brain Res 1154:31–39

    Article  PubMed  CAS  Google Scholar 

  • Yasuhara T, Shingo T, Muraoka K, Kameda M, Agari T, Wen Ji Y, Hayase H, Hamada H, Borlongan CV, Date I (2005) Neurorescue effects of VEGF on a rat model of Parkinson’s disease. Brain Res 1053:10–18

    Article  PubMed  CAS  Google Scholar 

  • Yuan Y, Hilliard G, Ferguson T, Millhorn DE (2003) Cobalt inhibits the interaction between hypoxia-inducible factor-alpha and von Hippel–Lindau protein by direct binding to hypoxia-inducible factor-alpha. J Biol Chem 278:15911–15916

    Article  PubMed  CAS  Google Scholar 

  • Zhu LL, Wu LY, Yew DT, Fan M (2005) Effects of hypoxia on the proliferation and differentiation of NSCs. Mol Neurobiol 31:231–242

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Federal Ministry of Education and Research (BMBF, PtJ-Bio 0313909) and the IZKF-Leipzig (TP C27).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javorina Milosevic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milosevic, J., Adler, I., Manaenko, A. et al. Non-hypoxic Stabilization of Hypoxia-Inducible Factor Alpha (HIF-α): Relevance in Neural Progenitor/Stem Cells. Neurotox Res 15, 367–380 (2009). https://doi.org/10.1007/s12640-009-9043-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-009-9043-z

Keywords

Navigation