Skip to main content
Log in

Biapigenin Modulates the Activity of the Adenine Nucleotide Translocator in Isolated Rat Brain Mitochondria

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

In this study, we investigated the effects of biapigenin, a biflavone present in the extracts of Hypericum perforatum, in rat brain mitochondrial bioenergetics and calcium homeostasis. We found that biapigenin significantly decreased adenosine diphosphate (ADP)-induced membrane depolarization and increased repolarization (by 68 and 37%, respectively). These effects were blocked by atractyloside and bongkrekic acid, but not oligomycin. In the presence of biapigenin, an ADP-stimulated state 3 respiration was still noticeable, which did not happen in the presence of adenine nucleotide translocator (ANT) inhibitors. Taking in consideration the relevance of the ANT in the modulation of the mitochondrial permeability transition pore (mPTP), mitochondrial calcium homeostasis was evaluated alone or in the presence of biapigenin. We found that biapigenin reduces mitochondrial calcium retention by increasing calcium efflux, an effect that was blocked by ADP plus oligomycin, an efficient blocker of the mPTP in brain mitochondria. Taken together, the results in this article suggest that biapigenin modulates mPTP opening, possibly by modulating ANT function, contributing for enhanced mitochondrial calcium efflux, thereby reducing calcium burden and contributing for neuroprotection against excitotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ΔΨm :

Mitochondrial transmembrane electric potential

ANT:

Adenosine nucleotide translocator

CsA:

Cyclosporin A

FCCP:

Carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone

mPTP:

Mitochondrial permeability transition pore

TPP:

Tetraphenylphosphonium-chloride

References

  • Andreyev AY, Kushnareva YE, Starkov AA (2005) Mitochondrial metabolism of reactive oxygen species. Biochemistry 70:200–214

    CAS  PubMed  Google Scholar 

  • Belisle E, Kowaltowski AJ (2002) Opening of mitochondrial K+ channels increases ischemic ATP levels by preventing hydrolysis. J Bioenerg Biomembr 34:285–298

    Article  CAS  PubMed  Google Scholar 

  • Bravo C, Vargas-Suárez M, Rodríguez-Enríquez S, Lova-Tavera H, Moreno-Sánchez R (2001) Metabolic changes induced by cold stress in rat liver mitochondria. J Bioenerg Biomembr 33:289–301

    Article  CAS  PubMed  Google Scholar 

  • Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287:C817–C833

    Article  CAS  PubMed  Google Scholar 

  • Bruni A, Luciani S, Contessa AR (1964) Inhibition by atractyloside of the binding of adenine-nucleotides to rat-liver mitochondria. Nature 201:1219–1220

    Article  CAS  PubMed  Google Scholar 

  • Bruni A, Luciani S, Bortignon C (1965) Competitive reversal by adenine nucleotides of atractyloside effect on mitochondrial energy transfer. Biochim Biophys Acta 97:434–441

    CAS  PubMed  Google Scholar 

  • Brustovetsky N, Dubinsky JM (2000) Dual responses of CNS mitochondria to elevated calcium. J Neurosci 20:103–113

    CAS  PubMed  Google Scholar 

  • Brustovetsky N, Klingenberg M (1994) The reconstituted ADP/ATP carrier can mediate H+ transport by free fatty acids, which is further stimulated by mersalyl. J Biol Chem 269:27329–27336

    CAS  PubMed  Google Scholar 

  • Brustovetsky NN, Dedukhova VI, Egorova MV, Mokhova EN, Skulachev VP (1990) Inhibitors of the ATP/ADP antiporter suppress stimulation of mitochondrial respiration and H+ permeability by palmitate and anionic detergents. FEBS Lett 272:187–189

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Ko Y, Delannoy M, Ludtke SJ, Chiu W, Pedersen PL (2004) Mitochondrial ATP synthasome: three-dimensional structure by electron microscopy of the ATP synthase in complex formation with carriers for Pi and ADP/ATP. J Biol Chem 279:31761–31768

    Article  CAS  PubMed  Google Scholar 

  • Cho J, Lee HK (2004) Wogonin inhibits excitotoxic and oxidative neuronal damage in primary cultured rat cortical cells. Eur J Pharmacol 485:105–110

    Article  CAS  PubMed  Google Scholar 

  • Comelli M, Metelli G, Mavelli I (2007) Downmodulation of mitochondrial F0F1 ATP synthase by diazoxide in cardiac myoblasts: a dual effect of the drug. Am J Physiol Heart Circ Physiol 292:H820–H829

    Article  CAS  PubMed  Google Scholar 

  • Dahout-Gonzalez C, Ramus C, Dassa EP, Dianoux AC, Brandolin G (2005) Conformation-dependent swinging of the matrix loop m2 of the mitochondrial Saccharomyces cerevisiae ADP/ATP carrier. Biochemistry 44:16310–16320

    Article  CAS  PubMed  Google Scholar 

  • Dahout-Gonzalez C, Nury H, Trezeguet V, Lauquin GJ, Pebay-Peyroula E, Brandolin G (2006) Molecular, functional, and pathological aspects of the mitochondrial ADP/ATP carrier. Physiology 21:242–249

    Article  CAS  PubMed  Google Scholar 

  • De Paola R, Muia C, Mazzon E, Genovese T, Crisafulli C, Menegazzi M, Caputi AP, Suzuki H, Cuzzocrea S (2005) Effect of Hypericum perforatum extract in a rat model of ischemia and reperfusion injury. Shock 24:255–263

    Article  PubMed  Google Scholar 

  • Di Carlo G, Borrelli F, Ernst E, Izzo AA (2001) St John’s wort: Prozac from the plant kingdom. Trends Pharmacol Sci 22:292–297

    Article  PubMed  Google Scholar 

  • Dias ACP, Tomas-Barberan FA, Fernandes-Ferreira FA, Ferreres F (1998) Unusual flavonoids produced by callus of Hypericum perforatum. Phytochemistry 48:1165–1168

    Article  CAS  Google Scholar 

  • Dorner A, Olesch M, Giessen S, Pauschinger M, Schultheiss HP (1999) Transcription of the adenine nucleotide translocase isoforms in various types of tissues in the rat. Biochim Biophys Acta 1417:16–24

    Article  CAS  PubMed  Google Scholar 

  • Dubinsky JM, Brustovetsky N, LaFrance R (2004) Protective roles of CNS mitochondria. J Bioenerg Biomembr 36:299–302

    Article  CAS  PubMed  Google Scholar 

  • Duchen MR (2004) Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Aspects Med 25:365–451

    CAS  PubMed  Google Scholar 

  • Estabrook RW (1967) Mitochondrial respiratory control and the polarographic measurement of ADP: O ratios. Methods Enzymol 10:41–47

    Article  CAS  Google Scholar 

  • Fernandez-Gomez FJ, Galindo MF, Gomez-Lazaro M, González-Garcia C, Ceña V, Aguirre N, Jordán J (2005) Involvement of mitochondrial potential and calcium buffering capacity in minocycline cytoprotective actions. Neuroscience 133:959–967

    Article  CAS  PubMed  Google Scholar 

  • Ferreira FM, Madeira VM, Moreno AJ (1997) Interactions of 2, 2-bis(p-chlorophenyl)-1, 1-dichloroethylene with mitochondrial oxidative phosphorylation. Biochem Pharmacol 53:299–308

    Article  CAS  PubMed  Google Scholar 

  • Halestrap AP (2006) Calcium, mitochondria and reperfusion injury: a pore way to die. Biochem Soc Trans 34:232–237

    Article  CAS  PubMed  Google Scholar 

  • Halestrap AP, Brenner C (2003) The adenine nucleotide translocase: a central component of the mitochondrial permeability transition pore and key player in cell death. Curr Med Chem 10:1507–1525

    Article  CAS  PubMed  Google Scholar 

  • Halestrap AP, McStay GP, Clarke SJ (2002) The permeability transition pore complex: another view. Biochimie 84:153–166

    Article  CAS  PubMed  Google Scholar 

  • Halestrap AP, Clarke SJ, Khaliulin I (2007) The role of mitochondria in protection of the heart by preconditioning. Biochim Biophys Acta 1767:1007–1031

    Article  CAS  PubMed  Google Scholar 

  • He L, Lemasters JJ (2002) Regulated and unregulated mitochondrial permeability transition pores: a new paradigm of pore structure and function? FEBS Lett 512:1–7

    Article  CAS  PubMed  Google Scholar 

  • Henderson PJ, Lardy HA (1970) Bongkrekic acid. An inhibitor of the adenine nucleotide translocase of mitochondria. J Biol Chem 245:1319–1326

    CAS  PubMed  Google Scholar 

  • Ichas F, Mazat JP (1998) From calcium signaling to cell death: two conformations for the mitochondrial permeability transition pore. Switching from low- to high-conductance state. Biochim Biophys Acta 1366:33–50

    Article  CAS  PubMed  Google Scholar 

  • Ishige K, Schubert D, Sagara Y (2001) Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radic Biol Med 30:433–446

    Article  CAS  PubMed  Google Scholar 

  • Kamo N, Muratsugu M, Hongoh R, Kobatake Y (1979) Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol 49:105–121

    Article  CAS  PubMed  Google Scholar 

  • Ko YH, Delannoy M, Hullihen J, Chiu W, Pedersen PL (2003) Mitochondrial ATP synthasome. Cristae-enriched membranes and a multiwell detergent screening assay yield dispersed single complexes containing the ATP synthase and carriers for Pi and ADP/ATP. J Biol Chem 278:12305–12309

    Article  CAS  PubMed  Google Scholar 

  • Kowaltowski AJ, Maciel EN, Fornazari M, Castilho RF (2006) Diazoxide protects against methylmalonate-induced neuronal toxicity. Exp Neurol 201:165–171

    Article  CAS  PubMed  Google Scholar 

  • Kristal BS, Stavrovskaya IG, Narayanan MV, Krasnikov BF, Brown AM, Beal MF, Friedlander RM (2004) The mitochondrial permeability transition as a target for neuroprotection. J Bioenerg Biomembr 36:309–312

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Mdzinarishvili A, Kiewert C, Abbruscato T, Bickel U, van der Schyf CJ, Klein J (2006) NMDA receptor-antagonistic properties of hyperforin, a constituent of St. John’s Wort. J Pharmacol Sci 102:47–54

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Bae JH, Lee SR (2004) Protective effect of green tea polyphenol EGCG against neuronal damage and brain edema after unilateral cerebral ischemia in gerbils. J Neurosci Res 77:892–900

    Article  CAS  PubMed  Google Scholar 

  • Madeira VM, Antunes-Madeira MC, Carvalho AP (1974) Activation energies of the ATPase activity of sarcoplasmic reticulum. Biochem Biophys Res Commun 58:897–904

    Article  CAS  PubMed  Google Scholar 

  • Mansson R, Hansson MJ, Morota S, Uchino H, Ekdhal CT, Elmér E (2007) Re-evaluation of mitochondrial permeability as a primary neuroprotective target of minocycline. Neurobiol Dis 25:198–205

    Article  CAS  PubMed  Google Scholar 

  • Montero M, Lobaton CD, Hernandez-Sanmiguel E, Santodomingo J, Vay L, Moreno A, Alvarez J (2004) Direct activation of the mitochondrial calcium uniporter by natural plant flavonoids. Biochem J 384:19–24

    Article  CAS  PubMed  Google Scholar 

  • Moreira PI, Santos MS, Sena C, Seica R, Oliveira CR (2005) Insulin protects against amyloid beta-peptide toxicity in brain mitochondria of diabetic rats. Neurobiol Dis 18:628–637

    Article  CAS  PubMed  Google Scholar 

  • Murata M, Akao M, O’Rourke B, Marban E (2001) Mitochondrial ATP-sensitive potassium channels attenuate matrix Ca(2+) overload during simulated ischemia and reperfusion: possible mechanism of cardioprotection. Circ Res 89:891–898

    Article  CAS  PubMed  Google Scholar 

  • Oliveira PJ, Seica R, Coxito PM, Rolo AP, Palmeira CM, Santos MS, Moreno AJ (2003) Enhanced permeability transition explains the reduced calcium uptake in cardiac mitochondria from streptozotocin-induced diabetic rats. FEBS Lett 554:511–514

    Article  CAS  PubMed  Google Scholar 

  • Oliveira PJ, Bjork JÁ, Santos MS, Leino RL, Froberg MK, Moreno AJ, Wallace KB (2004) Carvedilol-mediated antioxidant protection against doxorubicin-induced cardiac mitochondrial toxicity. Toxicol Appl Pharmacol 200:159–168

    Article  CAS  PubMed  Google Scholar 

  • Parihar MS, Brewer GJ (2007) Mitoenergetic failure in Alzheimer disease. Am J Physiol Cell Physiol 292:C8–C23

    Article  CAS  PubMed  Google Scholar 

  • Park C, So HS, Shin CH, Baek SH, Moon BS, Shin SH, Lee HS, Lee DW, Park R (2003) Quercetin protects the hydrogen peroxide-induced apoptosis via inhibition of mitochondrial dysfunction in H9c2 cardiomyoblast cells. Biochem Pharmacol 66:1287–1295

    Article  CAS  PubMed  Google Scholar 

  • Pietrobon D, Luvisetto S, Azzone GF (1987) Uncoupling of oxidative phosphorylation. Alternative mechanisms: intrinsic uncoupling or decoupling? Biochemistry 26:7339–7347

    Article  CAS  PubMed  Google Scholar 

  • Rasola A, Bernardi P (2007) The mitochondrial permeability transition pore and its involvement in cell death and in disease pathogenesis. Apoptosis 12:815–833

    Article  CAS  PubMed  Google Scholar 

  • Rice-Evans C (2001) Flavonoid antioxidants. Curr Med Chem 8:797–807

    CAS  PubMed  Google Scholar 

  • Santos AC, Uyemura SA, Lopes JL, Bazon JN, Mingatto FE, Curti C (1998) Effect of naturally occurring flavonoids on lipid peroxidation and membrane permeability transition in mitochondria. Free Radic Biol Med 24:1455–1461

    Article  CAS  PubMed  Google Scholar 

  • Schroeter H, Williams RJ, Matin R, Iversen L, Rice-Evans CA (2000) Phenolic antioxidants attenuate neuronal cell death following uptake of oxidized low-density lipoprotein. Free Radic Biol Med 29:1222–1233

    Article  CAS  PubMed  Google Scholar 

  • Shabalina IG, Kramarova TV, Nedergaard J, Cannon B (2006) Carboxyatractyloside effects on brown-fat mitochondria imply that the adenine nucleotide translocator isoforms ANT1 and ANT2 may be responsible for basal and fatty-acid-induced uncoupling respectively. Biochem J 399:405–414

    Article  CAS  PubMed  Google Scholar 

  • Shin DH, Bae YC, Kim-Han JS, Lee JH, Choi IY, Son KH, Kang SS, Kim WK, Han BH (2006a) Polyphenol amentoflavone affords neuroprotection against neuronal hypoxic-ischemic brain damage via multiple mechanisms. J Neurochem 96:561–572

    Article  CAS  PubMed  Google Scholar 

  • Shin WH, Park SJ, Kim EJ (2006b) Protective effects of anthocyanins in middle cerebral artery occlusion and reperfusion model of cerebral ischemia in rats. Life Sci 79:286–296

    Article  Google Scholar 

  • Silva B, Oliveira PJ, Dias ACP, Malva JO (2008) Quercetin, kaempferol and biapigenin from Hypericum perforatum are neuroprotective against excitotoxic insults. Neurotoxicity Res 13:265–279

    Article  CAS  Google Scholar 

  • Stocchi V, Cucchiarini L, Magnani M, Chiarantini L, Palma P, Crescentini G (1985) Simultaneous extraction and reverse-phase high-performance liquid chromatographic determination of adenine and pyridine nucleotides in human red blood cells. Anal Biochem 146:118–124

    Article  CAS  PubMed  Google Scholar 

  • Stout AK, Raphael HM, Kanterewicz BI, Klann E, Reynolds IJ (1998) Glutamate-induced neuron death requires mitochondrial calcium uptake. Nat Neurosci 1:366–373

    Article  CAS  PubMed  Google Scholar 

  • Teshima Y, Akao M, Li RA, Chong TH, Baumgartner WA, Johnston MV, Marbán E (2003) Mitochondrial ATP-sensitive potassium channel activation protects cerebellar granule neurons from apoptosis induced by oxidative stress. Stroke 34:1796–1802

    Article  CAS  PubMed  Google Scholar 

  • Urushitani M, Nakamizo T, Inoue R, Sawada H, Kihara T, Honda K, Akaike A, Shimohama S (2001) N-methyl-D-aspartate receptor-mediated mitochondrial Ca(2+) overload in acute excitotoxic motor neuron death: a mechanism distinct from chronic neurotoxicity after Ca(2+) influx. J Neurosci Res 63:377–387

    Article  CAS  PubMed  Google Scholar 

  • Vieira HL, Haouzi D, El-Hamel C, Jacotot E, Belzacq AS, Brenner C, Kroemer G (2000) Permeabilization of the mitochondrial inner membrane during apoptosis: impact of the adenine nucleotide translocator. Cell Death Differ 7:1146–1154

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Shen F, Lin L, Zhang X, Bruce IC, Xia Q (2006) The neuroprotection conferred by activating the mitochondrial ATP-sensitive K+ channel is mediated by inhibiting the mitochondrial permeability transition pore. Neurosci Lett 402:184–189

    Article  CAS  PubMed  Google Scholar 

  • Yazawa K, Kihara T, Shen H, Shimmyo Y, Niidome T, Sugimoto H (2006) Distinct mechanisms underlie distinct polyphenol-induced neuroprotection. FEBS Lett 580:6623–6628

    Article  CAS  PubMed  Google Scholar 

  • Zanotti F, Guerrieri F, Capozza G, Fiermonte M, Berden J, Papa S (1992) Role of F0 and F1 subunits in the gating and coupling function of mitochondrial H(+)-ATP synthase. The effect of dithiol reagents. Eur J Biochem 208:9–16

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We acknowledge the Portuguese Foundation for Science and Technology and FEDER for support, PhD grant SFRH/BD/13488/2003, and research projects POCI/SAU-NEU/58492/2004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João O. Malva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, B.A., Oliveira, P.J., Cristóvão, A. et al. Biapigenin Modulates the Activity of the Adenine Nucleotide Translocator in Isolated Rat Brain Mitochondria. Neurotox Res 17, 75–90 (2010). https://doi.org/10.1007/s12640-009-9082-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-009-9082-5

Keywords

Navigation