Skip to main content
Log in

Different Mechanisms Between Copper and Iron in Catecholamines-Mediated Oxidative DNA Damage and Disruption of Gene Expression In Vitro

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Catechols produce reactive oxygen species (ROS) and induce oxidative DNA damage through reduction–oxidation reactions with metals such as copper. Here, we examined oxidative DNA damage by neurotransmitter catecholamines in the presence of copper or iron and evaluated the effects of this damage on gene expression in vitro. Dopamine induced strand breaks and base oxidation in calf thymus DNA in the presence of Cu(II) or Fe(III)-NTA (nitrilotriacetic acid). The extent of this damage was greater for Cu(II) than for Fe(III)-NTA. For the DNA damage induced by dopamine, the responsible reactive species were hydrogen peroxide and Cu(I) for Cu(II) and hydroxyl radicals and Fe(II) for Fe(III)-NTA. Cu(II) induced DNA conformational changes, but Fe(III)-NTA did not in the presence of dopamine. These differences indicate different modes of action between Cu and Fe-NTA with regard to the induction of DNA damage. Expression of the lacZ gene coded on plasmid DNA was inhibited depending on the extent of the oxidative damage and strand breaks. Endogenous catecholamines (dopamine, adrenaline, and noradrenaline) were more potent than catechols (no aminoalkyl side chains) or 3,4-dihydroxybenzylamine (aminomethyl side chain). These results suggest that the metal-mediated DNA damage induced by dopamine disrupts gene expression, and leukoaminochromes (further oxidation products of O-quinones having aminoethyl side chain) are involved in the DNA damage. These findings indicate a possibility that metal (especially iron and copper)-mediated oxidation of catecholamines plays an important role in the pathogenesis of neurodegenerative disorders including Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ando M, Ueda K, Makino R, Nishino Y, Nishida H, Toda C, Okamoto Y, Kojima N (2009) Involvement of DNA conformational change induced by rearrangement of coordination geometry of copper in oxidative DNA damage by copper and dopamine. J Health Sci 55:319–323

    Article  CAS  Google Scholar 

  • Bindoli A, Rigobello MP, Deeble DJ (1992) Biochemical and toxicological properties of the oxidation production of catecholamines. Free Radic Biol Med 13:391–405

    Article  PubMed  CAS  Google Scholar 

  • Binolfi A, Lamberto GR, Duran R, Quintanar L, Bertoncini CW, Souza JM, Cerveñansky C, Zweckstetter M, Griesinger C, Fernández CO (2008) Site-specific interactions of Cu(II) with α and β-synuclein: bridging the molecular gap between metal binding and aggregation. J Am Chem Soc 130:11801–11812

    Article  PubMed  CAS  Google Scholar 

  • Brooks PJ (2002) DNA repair in neural cells: basic science and clinical implications. Mutat Res 509:93–108

    PubMed  CAS  Google Scholar 

  • Bryan SE, Vizard DL, Beary DA, LaBiche DA, Hardy KJ (1981) Partitioning of zinc and copper within subnuclear nucleoprotein particles. Nucl Acids Res 9:5811–5822

    Article  PubMed  CAS  Google Scholar 

  • Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ (1983) A primate model of Parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci USA 80:4546–4550

    Article  PubMed  CAS  Google Scholar 

  • Cowart RE, Singleton FL, Hind JS (1993) A comparison of bathophenanthrolinedisulfonic acid and ferrozine as chelators of iron(II) in reduction reactions. Anal Biochem 211:151–155

    Article  PubMed  CAS  Google Scholar 

  • Dexter DT, Wells FR, Lees AJ, Agid F, Agid Y, Jenner P, Marsden CD (1989) Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. J Neurochem 52:1830–1836

    Article  PubMed  CAS  Google Scholar 

  • Dijkwel PA, Wenink PW (1986) Structural integrity of the nuclear matrix: differential effects of thiol agents and metal chelators. J Cell Sci 84:53–67

    PubMed  CAS  Google Scholar 

  • El-Khamisy SF, Saifi GM, Weinfeld M, Johansson F, Helleday T, Lupski JR, Caldecott KW (2005) Defective DNA single-strand break repair in spinocerebellar ataxia with axonal neuropathy-1. Nature 434:108–113

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Aruoma OI (1991) DNA damage by oxygen-derived species. Its mechanism and measurement in mammalian systems. FEBS Lett 281:9–19

    Article  PubMed  CAS  Google Scholar 

  • Hamazaki S, Okada S, Ebina Y, Fujioka M, Midorikawa O (1986) Nephrotoxicity of ferric nitrilotriacetate: an electron-microscopic and metabolic study. Am J Pathol 123:343–350

    PubMed  CAS  Google Scholar 

  • Hastings TG, Lewis DA, Zigmond MJ (1996) Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections. Proc Natl Acad Sci USA 93:1956–1961

    Article  PubMed  CAS  Google Scholar 

  • Hoshino M, Qi ML, Yoshimura N, Miyashita T, Tagawa K, Wada Y, Enokido Y, Marubuchi S, Harjes P, Arai N, Oyanagi K, Blandino G, Sudol M, Rich T, Kanazawa I, Wanker EE, Saitoe M, Okazawa H (2006) Transcriptional repression induces a slowly progressive atypical neuronal death associated with changes of YAP isoforms and p73. J Cell Biol 172:589–604

    Article  PubMed  CAS  Google Scholar 

  • IARC Working Group (1990) IARC monographs on the evaluation of the carcinogenic risk of chemicals to man, vol 48. IARC, Lyon, 181 pp

    Google Scholar 

  • Kobayashi H, Oikawa S, Umemura S, Hirosawa I, Kawanishi S (2008) Mechanism of metal-mediated DNA damage and apoptosis induced by 6-hydroxydopamine in neuroblastoma SH-SY5Y cells. Free Radic Res 42:651–660

    Article  PubMed  CAS  Google Scholar 

  • Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980

    Article  PubMed  CAS  Google Scholar 

  • Leong SL, Pham CL, Galatis D, Fodero-Tavoletti MT, Perez K, Hill AF, Masters CL, Ali FE, Barnham KJ, Cappai R (2009) Formation of dopamine-mediated alpha-synuclein-soluble oligomers requires methionine oxidation. Free Radic Biol Med 46:1328–1337

    Article  PubMed  CAS  Google Scholar 

  • Linert W, Jameson GNL (2000) Redox reactions of neurotransmitters possibly involved in the progression of Parkinson’s disease. J Inorg Biochem 79:319–326

    Article  PubMed  CAS  Google Scholar 

  • Oikawa S, Kawanishi S (1998) Distinct mechanisms of site-specific DNA damage induced by endogenous reductants in the presence of iron(III) and copper(II). Biochem Biophys Acta 1399:19–30

    PubMed  CAS  Google Scholar 

  • Oikawa S, Hirosawa I, Hirakawa K, Kawanishi S (2001) Site specificity and mechanism of oxidative DNA damage induced by carcinogenic catechol. Carcinogenesis 22:1239–1245

    Article  PubMed  CAS  Google Scholar 

  • Oikawa S, Hirosawa I, Tada-Oikata S, Furukawa A, Nishiura K, Kawanishi S (2006) Mechanism for manganese enhancement of dopamine-induced oxidative DNA damage and neuronal cell death. Free Radic Biol Med 41:748–756

    Article  PubMed  CAS  Google Scholar 

  • Okamoto Y, Hayashi T, Matsunami S, Ueda K, Kojima N (2008) Combined activation of methyl paraben by light irradiation and esterase metabolism toward oxidative DNA damage. Chem Res Toxicol 21:1594–1599

    Article  PubMed  CAS  Google Scholar 

  • Ouameur AA, Arakawa H, Ahmad R, Naoui M, Tajmir-Riahi HA (2005) A comparative study of Fe(II) and Fe(III) interactions with DNA duplex: major and minor grooves bindings. DNA Cell Biol 24:394–401

    Article  PubMed  CAS  Google Scholar 

  • Paris I, Dagnino-Subiabre A, Marcelain K, Bennett LB, Caviedes P, Caviedes R, Azar CO, Segura-Aguilar J (2001) Copper neurotoxicity is dependent on dopamine-mediated copper uptake and one-electron reduction of aminochrome in a rat substantia nigra neuronal cell line. J Neurochem 77:519–529

    Article  PubMed  CAS  Google Scholar 

  • Paris I, Martinez-Alvarado P, Perez-Pastene C, Vieira MN, Olea-Azar C, Raisman-Vozari R, Cardenas S, Graumann R, Caviedes P, Segura-Aguilar J (2005a) Monoamine transporter inhibitors and norepinephrine reduce dopamine-dependent iron toxicity in cells derived from the substantia nigra. J Neurochem 92:1021–1032

    Article  PubMed  CAS  Google Scholar 

  • Paris I, Martinez-Alvarado P, Cárdenas S, Perez-Pastene C, Graumann R, Fuentes P, Olea-Azar C, Caviedes P, Segura-Aguilar J (2005b) Dopamine-dependent iron toxicity in cells derived from rat hypothalamus. Chem Res Toxicol 18:415–419

    Article  PubMed  CAS  Google Scholar 

  • Paris I, Perez-Pastene C, Couve E, Caviedes P, Ledoux S, Segura-Aguilar J (2009) Copper dopamine complex induces mitochondrial autophagy preceding caspase-independent apoptotic cell death. J Biol Chem 284:13306–13315

    Article  PubMed  CAS  Google Scholar 

  • Park JH, Gophishetty S, Szewczuk LM, Troxel AB, Harvey RG, Penning TM (2005) Formation of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxo-dGuo) by PAH o-quinones: involvement of reactive oxygen species and copper(II)/copper(I) redox cycling. Chem Res Toxicol 18:1026–1037

    Article  PubMed  CAS  Google Scholar 

  • Pryor WA (1986) Oxy-radicals and related species: their formation, lifetimes, and reactions. Annu Rev Physiol 48:657–667

    Article  PubMed  CAS  Google Scholar 

  • Pu H, Sakaguchi M, Kondo T, Kondo A, Kawabata T, Namba M (2001) Effects of oxygen concentrations on human fibroblasts treated with Fe3+-NTA. Int J Mol Med 7:295–300

    PubMed  CAS  Google Scholar 

  • Rajendran R, Minqin R, Ynsa MD, Casadesus G, Smith MA, Perry G, Halliwell B, Watt F (2009) A novel approach to the identification and quantitative elemental analysis of amyloid deposits—insights into the pathology of Alzheimer’s disease. Biochem Biophys Res Commun 382:91–95

    Article  PubMed  CAS  Google Scholar 

  • Sayre LM, Moreira PI, Smith MA, Perry G (2005) Metal ions and oxidative protein modification in neurological disease. Ann Ist Super Sanita 41:143–164

    PubMed  CAS  Google Scholar 

  • Schweigert N, Acero JL, von Gunten U, Canonica S, Zehnder AJB, Eggen RIL (2000) DNA degradation by the mixture of copper and catechol is caused by DNA-copper-hydroperoxo complexes, probably DNA-Cu(I)OOH. Environ Mol Mutagen 36:5–12

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Ito M, Ezure T, Kobayashi S, Shikata M, Tanimizu K, Nishimura O (2006) Performance of expression vector, pTD1, in insect cell-free translation system. J Biosci Bioeng 102:69–71

    Article  PubMed  CAS  Google Scholar 

  • Walter U (2010) Transcranial sonography in brain disorders with trace metal accumulation. Int Rev Neurobiol 90:166–178

    Article  PubMed  Google Scholar 

  • Wright JA, Wang X, Brown DR (2009) Unique copper-induced oligomers mediate alpha-synuclein toxicity. FASEB J 23:2384–2393

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto K, Kawanishi S (1989) Hydroxyl free radical is not the main active species in site-specific DNA damage induced by copper (II) ion and hydrogen peroxide. J Biol Chem 264:15435–15440

    PubMed  CAS  Google Scholar 

  • Zecca L, Stroppolo A, Gatti A, Tampellini D, Toscani M, Gallorini M, Giaveri G, Arosio P, Santambrogio P, Fariello RG, Karatekin E, Kleniman MH, Turro N, Hornykiewicz O, Zucca FA (2004) The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. Proc Natl Acad Sci USA 101:9843–9848

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. T. Ezure of Shimadzu Corporation for the gift of pTD1-Gal; Ms. Haruka Murase and Ms. Saori Maeda for their technical assistances. This research was supported in part by Academic Frontier Project for Private Universities; matching fund subsidy from MEXT (Ministry of Education, Culture, Sports, Science and Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nakao Kojima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishino, Y., Ando, M., Makino, R. et al. Different Mechanisms Between Copper and Iron in Catecholamines-Mediated Oxidative DNA Damage and Disruption of Gene Expression In Vitro. Neurotox Res 20, 84–92 (2011). https://doi.org/10.1007/s12640-010-9226-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-010-9226-7

Keywords

Navigation