Skip to main content
Log in

Ethylmalonic Acid Induces Permeability Transition in Isolated Brain Mitochondria

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Predominant accumulation of ethylmalonic acid (EMA) in tissues and biological fluids is a characteristic of patients affected by short chain acyl-CoA dehydrogenase deficiency and ethylmalonic encephalopathy. Neurological abnormalities are frequently found in these disorders, but the mechanisms underlying the brain injury are still obscure. Since hyperlacticacidemia is also found in many affected patients indicating a mitochondrial dysfunction; in the present work, we evaluated the in vitro and ex vivo effects of EMA plus Ca2+ on mitochondrial integrity and redox balance in succinate-supported brain organelles. We verified that the evaluated parameters were disturbed only when EMA was associated with exogenous micromolar Ca2+ concentrations. Thus, we found that this short chain organic acid plus Ca2+ dissipated the membrane potential and provoked mitochondrial swelling, as well as impaired the mitochondrial Ca2+ retention capacity, resulting in a rapid Ca2+ release and decreased NAD(P)H matrix content. In contrast, EMA was not able to stimulate mitochondrial hydrogen peroxide generation. We also observed that all these effects were prevented by the mitochondrial Ca2+ uptake inhibitor ruthenium red and the mitochondrial permeability transition (MPT) inhibitors cyclosporin A (CsA) and ADP. Furthermore, mitochondria isolated from rat brains after in vivo intrastriatal administration of EMA was more susceptible to Ca2+-induced swelling, which was fully prevented by CsA and ADP. Finally, EMA significantly decreased striatal slice viability, which was attenuated by CsA. The data strongly indicate that EMA reduced the mitochondrial threshold for Ca2+-induced MPT reinforcing the role of this cation in EMA-induced disruption of mitochondrial bioenergetics. It is, therefore, presumed that EMA acting synergistically with Ca2+ compromises mitochondrial energy homeostasis in the central nervous system that may explain at least in part the neurologic alterations presented by patients with abnormal levels of this organic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adam-Vizi V, Starkov AA (2010) Calcium and mitochondrial reactive oxygen species generation: how to read the facts. J Alzheimers Dis 20(Suppl 2):S413–426. doi:10.3233/JAD-2010-100465

    PubMed Central  PubMed  Google Scholar 

  • Akerman KE, Wikstrom MK (1976) Safranine as a probe of the mitochondrial membrane potential. FEBS Lett 68(2):191–197

    Article  CAS  PubMed  Google Scholar 

  • Amaral AU, Cecatto C, Busanello EN, Ribeiro CA, Melo DR, Leipnitz G, Castilho RF, Wajner M (2012) Ethylmalonic acid impairs brain mitochondrial succinate and malate transport. Mol Genet Metab 105(1):84–90. doi:10.1016/j.ymgme.2011.10.006

    Article  CAS  PubMed  Google Scholar 

  • Amendt BA, Greene C, Sweetman L, Cloherty J, Shih V, Moon A, Teel L, Rhead WJ (1987) Short-chain acyl-coenzyme a dehydrogenase deficiency. Clinical and biochemical studies in two patients. J Clin Invest 79(5):1303–1309. doi:10.1172/JCI112953

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW, Robbins J, Molkentin JD (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434(7033):658–662. doi:10.1038/nature03434

    Article  CAS  PubMed  Google Scholar 

  • Bano D, Young KW, Guerin CJ, Lefeuvre R, Rothwell NJ, Naldini L, Rizzuto R, Carafoli E, Nicotera P (2005) Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell 120(2):275–285. doi:10.1016/j.cell.2004.11.049

    Article  CAS  PubMed  Google Scholar 

  • Barschak AG, Ferreira Gda C, Andre KR, Schuck PF, Viegas CM, Tonin A, Dutra Filho CS, Wyse AT, Wannmacher CM, Vargas CR, Wajner M (2006) Inhibition of the electron transport chain and creatine kinase activity by ethylmalonic acid in human skeletal muscle. Metab Brain Dis 21(1):11–19. doi:10.1007/s11011-006-9000-y

    Article  CAS  PubMed  Google Scholar 

  • Basso E, Fante L, Fowlkes J, Petronilli V, Forte MA, Bernardi P (2005) Properties of the permeability transition pore in mitochondria devoid of cyclophilin D. J Biol Chem 280(19):18558–18561. doi:10.1074/jbc.C500089200

    Article  CAS  PubMed  Google Scholar 

  • Belliere J, Devun F, Cottet-Rousselle C, Batandier C, Leverve X, Fontaine E (2012) Prerequisites for ubiquinone analogs to prevent mitochondrial permeability transition-induced cell death. J Bioenerg Biomembr 44(1):207–212. doi:10.1007/s10863-012-9406-7

    Article  CAS  PubMed  Google Scholar 

  • Bernardi P (1992) Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore by the proton electrochemical gradient. Evidence that the pore can be opened by membrane depolarization. J Biol Chem 267(13):8834–8839

    CAS  PubMed  Google Scholar 

  • Bernardi P (2013) The mitochondrial permeability transition pore: a mystery solved? Front Physiol 4:95. doi:10.3389/fphys.2013.00095

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bernardi P, von Stockum S (2012) The permeability transition pore as a Ca(2+) release channel: new answers to an old question. Cell Calcium 52(1):22–27. doi:10.1016/j.ceca.2012.03.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brismar J, Ozand PT (1994) CT and MR of the brain in the diagnosis of organic acidemias. Experiences from 107 patients. Brain Dev 16(Suppl):104–124

    Article  PubMed  Google Scholar 

  • Brustovetsky N, Dubinsky JM (2000) Limitations of cyclosporin A inhibition of the permeability transition in CNS mitochondria. J Neurosci 20(22):8229–8237

    CAS  PubMed  Google Scholar 

  • Corydon MJ, Vockley J, Rinaldo P, Rhead WJ, Kjeldsen M, Winter V, Riggs C, Babovic-Vuksanovic D, Smeitink J, De Jong J, Levy H, Sewell AC, Roe C, Matern D, Dasouki M, Gregersen N (2001) Role of common gene variations in the molecular pathogenesis of short-chain acyl-CoA dehydrogenase deficiency. Pediatr Res 49(1):18–23. doi:10.1203/00006450-200101000-00008

    Article  CAS  PubMed  Google Scholar 

  • Crompton M, Virji S, Doyle V, Johnson N, Ward JM (1999) The mitochondrial permeability transition pore. Biochem Soc Symp 66:167–179

    CAS  PubMed  Google Scholar 

  • Fernandes AM, Landeira-Fernandez AM, Souza-Santos P, Carvalho-Alves PC, Castilho RF (2008) Quinolinate-induced rat striatal excitotoxicity impairs endoplasmic reticulum Ca2+-ATPase function. Neurochem Res 33(9):1749–1758. doi:10.1007/s11064-008-9619-7

    Article  CAS  PubMed  Google Scholar 

  • Ferreira GC, Andre KR, Schuck PF, Viegas CM, Tonin A, Coelho Dde M, Wyse AT, Wannmacher CM, Vargas CR, Wajner M (2006) Effect of in vivo administration of ethylmalonic acid on energy metabolism in rat tissues. Metab Brain Dis 21(1):29–39. doi:10.1007/s11011-006-9004-7

    Article  CAS  Google Scholar 

  • Figueira TR, Melo DR, Vercesi AE, Castilho RF (2012) Safranine as a fluorescent probe for the evaluation of mitochondrial membrane potential in isolated organelles and permeabilized cells. Methods Mol Biol 810:103–117. doi:10.1007/978-1-61779-382-0_7

    Article  CAS  PubMed  Google Scholar 

  • Figueira TR, Barros MH, Camargo AA, Castilho RF, Ferreira JC, Kowaltowski AJ, Sluse FE, Souza-Pinto NC, Vercesi AE (2013) Mitochondria as a source of reactive oxygen and nitrogen species: from molecular mechanisms to human health. Antioxid Redox Signal 18(16):2029–2074. doi:10.1089/ars.2012.4729

    Article  CAS  PubMed  Google Scholar 

  • Fiskum G, Murphy AN, Beal MF (1999) Mitochondria in neurodegeneration: acute ischemia and chronic neurodegenerative diseases. J Cereb Blood Flow Metab 19(4):351–369. doi:10.1097/00004647-199904000-00001

    Article  CAS  PubMed  Google Scholar 

  • Friberg H, Wieloch T (2002) Mitochondrial permeability transition in acute neurodegeneration. Biochimie 84(2–3):241–250

    Article  CAS  PubMed  Google Scholar 

  • Garavaglia B, Colamaria V, Carrara F, Tonin P, Rimoldi M, Uziel G (1994) Muscle cytochrome c oxidase deficiency in two Italian patients with ethylmalonic aciduria and peculiar clinical phenotype. J Inherit Metab Dis 17(3):301–303

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Silva MT, Ribes A, Campos Y, Garavaglia B, Arenas J (1997) Syndrome of encephalopathy, petechiae, and ethylmalonic aciduria. Pediatr Neurol 17(2):165–170

    Article  CAS  PubMed  Google Scholar 

  • Giordano C, Viscomi C, Orlandi M, Papoff P, Spalice A, Burlina A, Di Meo I, Tiranti V, Leuzzi V, d’Amati G, Zeviani M (2012) Morphologic evidence of diffuse vascular damage in human and in the experimental model of ethylmalonic encephalopathy. J Inherit Metab Dis 35(3):451–458. doi:10.1007/s10545-011-9408-3

    Article  PubMed  Google Scholar 

  • Gregersen N, Winter VS, Corydon MJ, Corydon TJ, Rinaldo P, Ribes A, Martinez G, Bennett MJ, Vianey-Saban C, Bhala A, Hale DE, Lehnert W, Kmoch S, Roig M, Riudor E, Eiberg H, Andresen BS, Bross P, Bolund LA, Kolvraa S (1998) Identification of four new mutations in the short-chain acyl-CoA dehydrogenase (SCAD) gene in two patients: one of the variant alleles, 511C–>T, is present at an unexpectedly high frequency in the general population, as was the case for 625G–>A, together conferring susceptibility to ethylmalonic aciduria. Hum Mol Genet 7(4):619–627

    Article  CAS  PubMed  Google Scholar 

  • Kehrer JP, Lund LG (1994) Cellular reducing equivalents and oxidative stress. Free Radic Biol Med 17(1):65–75

    Article  CAS  PubMed  Google Scholar 

  • Kowaltowski AJ, Castilho RF, Vercesi AE (2001) Mitochondrial permeability transition and oxidative stress. FEBS Lett 495(1–2):12–15

    Article  CAS  PubMed  Google Scholar 

  • Kristal BS, Dubinsky JM (1997) Mitochondrial permeability transition in the central nervous system: induction by calcium cycling-dependent and -independent pathways. J Neurochem 69(2):524–538

    Article  CAS  PubMed  Google Scholar 

  • Leipnitz G, Schuck PF, Ribeiro CA, Dalcin KB, Assis DR, Barschak AG, Pulrolnik V, Wannmacher CM, Wyse AT, Wajner M (2003) Ethylmalonic acid inhibits mitochondrial creatine kinase activity from cerebral cortex of young rats in vitro. Neurochem Res 28(5):771–777

    Article  CAS  PubMed  Google Scholar 

  • Le-Quoc D, Le-Quoc K (1989) Relationships between the NAD(P) redox state, fatty acid oxidation, and inner membrane permeability in rat liver mitochondria. Arch Biochem Biophys 273(2):466–478

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Fiskum G, Schubert D (2002) Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochem 80(5):780–787

    Article  CAS  PubMed  Google Scholar 

  • Maciel EN, Kowaltowski AJ, Schwalm FD, Rodrigues JM, Souza DO, Vercesi AE, Wajner M, Castilho RF (2004) Mitochondrial permeability transition in neuronal damage promoted by Ca2+ and respiratory chain complex II inhibition. J Neurochem 90(5):1025–1035. doi:10.1111/j.1471-4159.2004.02565.x

    Article  CAS  PubMed  Google Scholar 

  • Marshall D, Soliakov L, Redfern P, Wonnacott S (1996) Tetrodotoxin-sensitivity of nicotine-evoked dopamine release from rat striatum. Neuropharmacology 35(11):1531–1536

    Article  CAS  PubMed  Google Scholar 

  • Mirandola SR, Melo DR, Schuck PF, Ferreira GC, Wajner M, Castilho RF (2008) Methylmalonate inhibits succinate-supported oxygen consumption by interfering with mitochondrial succinate uptake. J Inherit Metab Dis 31(1):44–54. doi:10.1007/s10545-007-0798-1

    Article  CAS  PubMed  Google Scholar 

  • Mohanty JG, Jaffe JS, Schulman ES, Raible DG (1997) A highly sensitive fluorescent micro-assay of H2O2 release from activated human leukocytes using a dihydroxyphenoxazine derivative. J Immunol Methods 202(2):133–141

    Article  CAS  PubMed  Google Scholar 

  • Moore CL (1971) Specific inhibition of mitochondrial Ca++ transport by ruthenium red. Biochem Biophys Res Commun 42(2):298–305

    Article  CAS  PubMed  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63

    Article  CAS  PubMed  Google Scholar 

  • Murphy AN, Fiskum G, Beal MF (1999) Mitochondria in neurodegeneration: bioenergetic function in cell life and death. J Cereb Blood Flow Metab 19(3):231–245. doi:10.1097/00004647-199903000-00001

    Article  CAS  PubMed  Google Scholar 

  • Nicholls DG, Budd SL (2000) Mitochondria and neuronal survival. Physiol Rev 80(1):315–360

    CAS  PubMed  Google Scholar 

  • Nowaczyk MJ, Blaser SI, Clarke JT (1998) Central nervous system malformations in ethylmalonic encephalopathy. Am J Med Genet 75(3):292–296. doi:10.1002/(SICI)1096-8628(19980123)75

    Article  CAS  PubMed  Google Scholar 

  • Ozand PT, Rashed M, Millington DS, Sakati N, Hazzaa S, Rahbeeni Z, al Odaib A, Youssef N, Mazrou A, Gascon GG et al (1994) Ethylmalonic aciduria: an organic acidemia with CNS involvement and vasculopathy. Brain Dev 16(Suppl):12–22

    Article  PubMed  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Pedersen CB, Kolvraa S, Kolvraa A, Stenbroen V, Kjeldsen M, Ensenauer R, Tein I, Matern D, Rinaldo P, Vianey-Saban C, Ribes A, Lehnert W, Christensen E, Corydon TJ, Andresen BS, Vang S, Bolund L, Vockley J, Bross P, Gregersen N (2008) The ACADS gene variation spectrum in 114 patients with short-chain acyl-CoA dehydrogenase (SCAD) deficiency is dominated by missense variations leading to protein misfolding at the cellular level. Hum Genet 124(1):43–56. doi:10.1007/s00439-008-0521-9

    Article  CAS  PubMed  Google Scholar 

  • Pedersen CB, Zolkipli Z, Vang S, Palmfeldt J, Kjeldsen M, Stenbroen V, Schmidt SP, Wanders RJ, Ruiter JP, Wibrand F, Tein I, Gregersen N (2010) Antioxidant dysfunction: potential risk for neurotoxicity in ethylmalonic aciduria. J Inherit Metab Dis 33(3):211–222. doi:10.1007/s10545-010-9086-6

    Article  CAS  PubMed  Google Scholar 

  • Pull I, McIlwain H (1972) Metabolism of (14 C)adenine and derivatives by cerebral tissues, superfused and electrically stimulated. Biochem J 126(4):965–973

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rasola A, Bernardi P (2011) Mitochondrial permeability transition in Ca(2+)-dependent apoptosis and necrosis. Cell Calcium 50(3):222–233. doi:10.1016/j.ceca.2011.04.007

    Article  CAS  PubMed  Google Scholar 

  • Ribes A, Riudor E, Garavaglia B, Martinez G, Arranz A, Invernizzi F, Briones P, Lamantea E, Sentis M, Barcelo A, Roig M (1998) Mild or absent clinical signs in twin sisters with short-chain acyl-CoA dehydrogenase deficiency. Eur J Pediatr 157(4):317–320

    Article  CAS  PubMed  Google Scholar 

  • Rizzuto R, De Stefani D, Raffaello A, Mammucari C (2012) Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 13(9):566–578. doi:10.1038/nrm3412

    Article  CAS  PubMed  Google Scholar 

  • Rosenthal RE, Hamud F, Fiskum G, Varghese PJ, Sharpe S (1987) Cerebral ischemia and reperfusion: prevention of brain mitochondrial injury by lidoflazine. J Cereb Blood Flow Metab 7(6):752–758. doi:10.1038/jcbfm.1987.130

    Article  CAS  PubMed  Google Scholar 

  • Rottenberg H, Marbach M (1989) Adenine nucleotides regulate Ca2+ transport in brain mitochondria. FEBS Lett 247(2):483–486

    Article  CAS  PubMed  Google Scholar 

  • Saito A, Castilho RF (2010) Inhibitory effects of adenine nucleotides on brain mitochondrial permeability transition. Neurochem Res 35(11):1667–1674. doi:10.1007/s11064-010-0228-x

    Article  CAS  PubMed  Google Scholar 

  • Schuck PF, Leipnitz G, Ribeiro CA, Dalcin KB, Assis DR, Barschak AG, Pulrolnik V, Wannmacher CM, Wyse AT, Wajner M (2002) Inhibition of creatine kinase activity in vitro by ethylmalonic acid in cerebral cortex of young rats. Neurochem Res 27(12):1633–1639

    Article  CAS  PubMed  Google Scholar 

  • Schuck PF, Ferreira Gda C, Viegas CM, Tonin AM, Busanello EN, Pettenuzzo LF, Netto CA, Wajner M (2009) Chronic early postnatal administration of ethylmalonic acid to rats causes behavioral deficit. Behav Brain Res 197(2):364–370. doi:10.1016/j.bbr.2008.09.031

    Article  CAS  PubMed  Google Scholar 

  • Schuck PF, Busanello EN, Moura AP, Tonin AM, Grings M, Ritter L, Vargas CR, da Costa Ferreira G, Wajner M (2010) Promotion of lipid and protein oxidative damage in rat brain by ethylmalonic acid. Neurochem Res 35(2):298–305. doi:10.1007/s11064-009-0055-0

    Article  CAS  PubMed  Google Scholar 

  • Schuck PF, De Assis DR, Viegas CM, Pereira TC, Machado JL, Furlanetto CB, Bogo MR, Streck EL, Ferreira GC (2013) Ethylmalonic acid modulates Na+, K(+)-ATPase activity and mRNA levels in rat cerebral cortex. Synapse 67(3):111–117. doi:10.1002/syn.21618

    Article  CAS  PubMed  Google Scholar 

  • Starkov AA (2010) The molecular identity of the mitochondrial Ca2+ sequestration system. FEBS J 277(18):3652–3663. doi:10.1111/j.1742-4658.2010.07756.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tahara EB, Navarete FD, Kowaltowski AJ (2009) Tissue-, substrate-, and site-specific characteristics of mitochondrial reactive oxygen species generation. Free Radic Biol Med 46(9):1283–1297. doi:10.1016/j.freeradbiomed.2009.02.008

    Article  CAS  PubMed  Google Scholar 

  • Tanveer A, Virji S, Andreeva L, Totty NF, Hsuan JJ, Ward JM, Crompton M (1996) Involvement of cyclophilin D in the activation of a mitochondrial pore by Ca2+ and oxidant stress. Eur J Biochem 238(1):166–172

    Article  CAS  PubMed  Google Scholar 

  • Tein I, Elpeleg O, Ben-Zeev B, Korman SH, Lossos A, Lev D, Lerman-Sagie T, Leshinsky-Silver E, Vockley J, Berry GT, Lamhonwah AM, Matern D, Roe CR, Gregersen N (2008) Short-chain acyl-CoA dehydrogenase gene mutation (c.319C > T) presents with clinical heterogeneity and is candidate founder mutation in individuals of Ashkenazi Jewish origin. Mol Genet Metab 93(2):179–189. doi:10.1016/j.ymgme.2007.09.021

    Article  CAS  PubMed  Google Scholar 

  • Tiranti V, D’Adamo P, Briem E, Ferrari G, Mineri R, Lamantea E, Mandel H, Balestri P, Garcia-Silva MT, Vollmer B, Rinaldo P, Hahn SH, Leonard J, Rahman S, Dionisi-Vici C, Garavaglia B, Gasparini P, Zeviani M (2004) Ethylmalonic encephalopathy is caused by mutations in ETHE1, a gene encoding a mitochondrial matrix protein. Am J Hum Genet 74(2):239–252. doi:10.1086/381653

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tiranti V, Briem E, Lamantea E, Mineri R, Papaleo E, De Gioia L, Forlani F, Rinaldo P, Dickson P, Abu-Libdeh B, Cindro-Heberle L, Owaidha M, Jack RM, Christensen E, Burlina A, Zeviani M (2006) ETHE1 mutations are specific to ethylmalonic encephalopathy. J Med Genet 43(4):340–346. doi:10.1136/jmg.2005.036210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tiranti V, Viscomi C, Hildebrandt T, Di Meo I, Mineri R, Tiveron C, Levitt MD, Prelle A, Fagiolari G, Rimoldi M, Zeviani M (2009) Loss of ETHE1, a mitochondrial dioxygenase, causes fatal sulfide toxicity in ethylmalonic encephalopathy. Nat Med 15(2):200–205. doi:10.1038/nm.1907

    Article  CAS  PubMed  Google Scholar 

  • Zafeiriou DI, Augoustides-Savvopoulou P, Haas D, Smet J, Triantafyllou P, Vargiami E, Tamiolaki M, Gombakis N, van Coster R, Sewell AC, Vianey-Saban C, Gregersen N (2007) Ethylmalonic encephalopathy: clinical and biochemical observations. Neuropediatrics 38(2):78–82. doi:10.1055/s-2007-984447

    Article  CAS  PubMed  Google Scholar 

  • Zolkipli Z, Pedersen CB, Lamhonwah AM, Gregersen N, Tein I (2011) Vulnerability to oxidative stress in vitro in pathophysiology of mitochondrial short-chain acyl-CoA dehydrogenase deficiency: response to antioxidants. PLoS One 6(4):e17534. doi:10.1371/journal.pone.0017534

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zoratti M, Szabo I (1995) The mitochondrial permeability transition. Biochim Biophys Acta 1241(2):139–176

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the technical support of Edilene S. Santos. This work was supported by grants from CNPq, PRONEX II, FAPERGS, FAPESP (# 2011/50400-0), PROPESQ/UFRGS, FINEP research grant Rede Instituto Brasileiro de Neurociência (IBN-Net) # 01.06.0842-00, and Instituto Nacional de Ciência e Tecnologia Excitotoxicidade e Neuroproteção (INCT-EN).

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moacir Wajner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cecatto, C., Amaral, A.U., Leipnitz, G. et al. Ethylmalonic Acid Induces Permeability Transition in Isolated Brain Mitochondria. Neurotox Res 26, 168–178 (2014). https://doi.org/10.1007/s12640-014-9460-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-014-9460-5

Keywords

Navigation