Skip to main content
Log in

Infrared and Raman spectra of Histidine: an ab initio DFT calculations of Histidine molecule and its different protonated forms

  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The infrared spectra of Histidine molecule have been recorded in the Nujoll mull as well as in aqueous solution in the range 400–4000 cm−1. The Raman spectrum of the same molecule has also been measured. The different protonated/deprotonated forms of imidazole ring which contains different forms of Histidine1, Histidine2, Histidine3 and Histidine4 have been studied with DFT and RHF methods using several basis sets. A comparison of energies of the two neutral tautomers (Histidine1 and Histidine2) indicates that Histidine1 is more stable as compared to Histidine2 while Histidine3 (imidazolium cation) is the most stable in gas phase. The selected geometrical parameters and theoretically calculated frequencies for the above-mentioned form of Histidine were also proposed. The observed IR and Raman bands of Histidine molecule are assigned to different modes on the basis of calculated frequencies, their intensities and available literature values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R D Suenram and F J Lovas J. Mol. Spectrosc. 72 372 (1978)

    Article  ADS  Google Scholar 

  2. R D Suenram and F J Lovas J. Am. Chem. Soc. 102 7180 (1980)

    Article  Google Scholar 

  3. K Iijima, K Tanaka and S Onuma J. Mol. Struct. 246 257 (1991)

    Article  ADS  Google Scholar 

  4. K Iijima and B Beagley J. Mol. Struct. 248 133 (1991)

    Article  ADS  Google Scholar 

  5. F Blomberg, W Mauer and H Ruterjans J. Am. Chem. Soc. 99 8149 (1977)

    Article  Google Scholar 

  6. I Ashikawa and K Itoh Biopolymers 18 1859 (1979)

    Article  Google Scholar 

  7. I Ashikawa and K Itoh Biopolymers 18 1859 (2004)

    Article  Google Scholar 

  8. K Hasegawa, Taka-aki Ono and T Noguchi J. Phys. Chem. B104 4253 (2000)

    Google Scholar 

  9. K Hasegawa, Taka-aki Ono and T Noguchi J. Phys. Chem. A106 3377 (2002)

    Google Scholar 

  10. Akira Toyama, Kunio Ono, Shinji Hashimoto and Hideo Takeuchi J. Phys. Chem. A106 3403 (2002)

    Google Scholar 

  11. Weixin Fei, Amareshwar Kumar Rai, Zhiwen Lu and Z J Lin J. Molecular Structuure (Theochem) 895 65 (2009)

    Article  Google Scholar 

  12. A K Rai, W Fei, Z Lu and Z J Lin J. Theoretical Chemistry Account 124 37 (2009)

    Article  Google Scholar 

  13. J G Mesu, T Visser, F Soulimani and B M Weckhuysen Vibrational Spectroscopy 39 114 (2005)

    Article  Google Scholar 

  14. C Lee, W Yang and R G Parr Phys. Rev. B37 785 (1988)

    ADS  Google Scholar 

  15. E B Wilson, (Jr), J C Decius and P C Cross Molecular Vibration (New York: Mc Graw Hill) (1955)

    Google Scholar 

  16. Gaussian 03, Revision A.1, M J Frisch, G W Trucks, H B Schlegel, G E Scuseria, M A Robb, J R Cheeseman, J A Montgomery, (Jr), T Vreven, K N Kudin, J C Burant, J M Millam, S S Iyengar, J Tomasi, V Barone, B Mennucci, M Cossi, G Scalmani, N Rega, G A Petersson, H Nakatsuji, M Hada, M Ehara, K Toyota, R Fukuda, J Hasegawa, M Ishida, T Nakajima, Y Honda, O Kitao, H Nakai, M Klene, X Li, J E Knox, H P Hratchian, J B Cross, C Adamo, J Jaramillo, R Gomperts, R E Stratmann, O Yazyev, A J Austin, R Cammi, C. Pomelli, J W Ochterski, P Y Ayala, K Morokuma, G A Voth, P Salvador, J J Dannenberg, V G Zakrzewski, S Dapprich, A. D Danniels, M C Strain, O Farkas, D K Malick, A D Rabuck, K Raghavachari, J B Foresman, J V Ortiz, Q Cui, A G Baboul, S Clifford, J Cioslowski, B B Stefanov, G Liu, A Liashenko, P Piskorz, I Komaromi, R L Martin, D J Fox, T Keith, M A Al-Laham, C Y Peng, A Nanayakkara, M Challacombe, P M W Gill, B Johnson, W Chen, M W Wong, C Gonzalez and J A Pople Gaussian, Inc. (Pittsburgh PA) (2003)

  17. E M Marti, Ch Methivier, P Dubot and C M Pradier J. Phys. Chem. B107 10785 (2003)

    Google Scholar 

  18. N Wellner and G Zundel J. Mol. Struct. 317 249 (1994)

    Article  ADS  Google Scholar 

  19. S R de Andrada Leite, M A Coutos dosSantos, C R Carobelli, A M Galindo Massabni Spectrochimica Acta A55 1185 (1999)

    Google Scholar 

  20. F J Ramirez, I Tunon, J A Collado and E Silla J. Am. Chem. Soc. 125 2328 (2003)

    Article  Google Scholar 

  21. S Olsztynska, K Komorowska, L Vrielynck and N Dupuy Appl. Spectrosc. 55 901 (2001)

    Article  ADS  Google Scholar 

  22. M Majoube, P Millie and G Vergoten J. Mol. Struct. 344 21 (1995)

    Article  ADS  Google Scholar 

  23. I Ashikawa and K Itoh Chem. Lett. 7 681 (1978)

    Article  Google Scholar 

  24. J W Ochterski Vibrational Analysis in Gaussian Gaussian Inc. (Pittsburg, PA) (2000)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Rai, A.K., Rai, S.B. et al. Infrared and Raman spectra of Histidine: an ab initio DFT calculations of Histidine molecule and its different protonated forms. Indian J Phys 84, 563–573 (2010). https://doi.org/10.1007/s12648-010-0039-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-010-0039-6

Keywords

Navigation