Skip to main content
Log in

Effect of the photothermal Moore–Gibson–Thomson model on a rotating viscoelastic continuum body with a cylindrical hole due to the fractional Kelvin-Voigt model

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

According to recent research, the theoretical consequences of viscoelastic materials may be adequately described using fractional calculus. A novel model for the fractional time derivative of the Kelvin-Voigt type of viscoelastic semiconductor material has been provided in this study. The Atangana and Baleanu (AB) fractional derivatives operator is utilized, which employs the generalized Mittag–Leffler function as a nonlocal and non-singular kernel and respects all features of fractional derivatives. The Moore–Gibson–Thompson (MGT) photothermal heat transfer model has also been considered to explain the mechanism of photosensitive heat transfer and the interplay between plasma, elastic, and heat signals. This fractional model is used to explore thermal and photoacoustic interactions when an infinite viscoelastic rotating material with a circular cylindrical hole is exposed to a time-dependent variable heat in the presence of an axial constant magnetic field. The solutions of photothermal field variables are obtained using Laplace transform methods, and the technique of Fourier series expansions is applied to obtain the inversions. Results have been listed to examine how the fractional-order and mechanical viscoelastic relaxation parameters affect different photo-thermoelastic variables that have physical meaning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\(\lambda_{0} ,\mu_{0}\) :

Lam´e’s constants

\(\alpha_{t}\) :

Thermal expansion coefficient

\(C_{E}\) :

Specific heat

\(\gamma_{0} = \left( {3\lambda_{0} + 2\mu_{0} } \right)\alpha_{t}\) :

Thermal coupling parameter

\(T_{0}\) :

Reference temperature

\(\theta = T - T_{0}\) :

Temperature increment

T :

Absolute temperature

\(\overrightarrow {{\text{u}}}\) :

Displacement vector

\(e = {\text{div}}\overrightarrow {{\text{u}}}\) :

Cubical dilatation

\(\sigma_{ij}\) :

Stress tensor

\(e_{ij}\) :

Strain tensor

\(\delta_{ij}\) :

Kronecker’s delta function

\(n_{0}\) :

Equilibrium carrier concentration

\(\vec{H}\) :

Magnetic field

\(\vec{h}\) :

Induced magnetic field

\(d_{0} = \left( {3\lambda_{0} + 2\mu_{0} } \right)d_{n}\) :

Diffusion coupling parameter

\(\mu_{v} ,\lambda_{v} ,\gamma_{v} ,d_{v}\) :

Viscoelastic relaxation times

K :

Thermal conductivity

\(\rho\) :

Material density

\(\alpha\) :

Fractional order

\(D_{t}^{\alpha }\) :

Fractional operator

\(\vec{E}\) :

Induced electric field

N :

Carrier density

\(\tau_{0}\) :

Relaxation time

\(\tau_{ij}\) :

Maxwell stress

\(E_{g}\) :

Semiconducting energy gap

\( d_{n}\) :

Electronic deformation coefficient

\(D_{E}\) :

Diffusion coefficient

\(\vec{q}\) :

Heat flux vector

\(\kappa\) :

Thermal activation coupling parameter

\(\tau\) :

Ifetime of photogenerated electron

\(\vec{J}\) :

Current density

\(\mu_{0}\) :

Magnetic permeability

G :

Carrier photogeneration source

References

  1. A M Freudenthal J. Appl. Phys. 25 1110 (1954)

    Article  ADS  Google Scholar 

  2. N W Tschegl Mech. Time Depend. Mater. 1 3 (1997)

    Article  ADS  Google Scholar 

  3. B Gross Mathematical structure of the theories of viscoelasticity, Hermann (1953)

  4. R S Lakes Viscoelastic Solids, CRC Press (1998)

  5. A Ilioushin, B Pobedria Fundamentals of the mathematical theory of thermal viscoelasticity, Nauka (1970) (In Russian)

  6. R Tanner Engineering rheology, Oxford University Press (1988)

  7. R Quintanilla Eur. J. Mech. A Solids 24 311 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  8. D Iesan and L Nappa Math. Mech. Solids. 13 55 (2008)

    Article  MathSciNet  Google Scholar 

  9. Y Zhao, Y Zhang, F Liu and I Turner Math. Appl. 73 1087 (2017)

    Google Scholar 

  10. R L Bagley and P J Torvik AIAA J. 21 741 (1983)

    Article  ADS  Google Scholar 

  11. Caputo and M Fabrizio Progr. Fract. Differ. Appl. 1 73 (2015)

  12. M Zhang Meth. Part. Differ. Equ. 35 1588 (2019)

    Article  Google Scholar 

  13. J Losada and J Nieto Progr. Fract. Differ. Appl. 1 87 (2015)

    Google Scholar 

  14. F Ali Eur. Phys. J. Plus 131 377 (2016)

    Article  Google Scholar 

  15. L Wei and W Li Math. Comput. Simul. 188 280 (2021)

    Article  Google Scholar 

  16. A Atangana and B S T Alkahtani Adv. Mech. Eng. 7 871 (2015)

    Google Scholar 

  17. T M Atanacković Calc Appl Anal. 21 29 (2018)

    Article  Google Scholar 

  18. M I Abbas Asian Eur. J. Math. 14 2150073 (2021)

    Article  Google Scholar 

  19. A Atangana and D Baleanu Therm. Sci. 20 763 (2016)

    Article  Google Scholar 

  20. A Atangana and D Baleanu J. Eng. Mech. D4016005 (2016)

  21. A Atangana and I Koca Chaos Solitons Fract. 1 (2016)

  22. A M A El-Sayed J. Fract. Calc. Appl. 6 101 (2015)

    MathSciNet  Google Scholar 

  23. G S F Frederico and D F M Torres Int. Math. Forum 3 1 (2008)

    MathSciNet  Google Scholar 

  24. H W Lord and Y Shulman J. Mech. Phys. Solids 15 299 (1967)

    Article  ADS  Google Scholar 

  25. A E Green and K A Lindsay J. Elast. 2 1 (1972)

    Article  Google Scholar 

  26. A E Green and P M Naghdi Proc. R Soc. A Math. Phys. Eng. Sci. 432 171 (1991)

    ADS  Google Scholar 

  27. A E Green and P M Naghdi J. Therm. Stresses 15 253 (1992)

    Article  ADS  Google Scholar 

  28. A E Green and P M Naghdi J. Elast. 31 189 (1993)

    Article  Google Scholar 

  29. A E Abouelregal, H M Sedighi, S A Faghidian and A H Shirazi Facta Un., Series: Mech. Eng. 19 633 (2021)

    Google Scholar 

  30. A E Abouelregal, W W Mohammed and H M Sedighi Arch. Appl. Mech. 91 2127 (2021)

    Article  ADS  Google Scholar 

  31. A E Abouelregal J. Appl. Comput. Mech. 6 445 (2020)

    Google Scholar 

  32. A E Abouelregal Multidiscip. Model. Mater. Struct. 16 689 (2019)

    Article  Google Scholar 

  33. A E Abouelregal Indian J. Phys. 94 1949 (2020)

    Article  ADS  Google Scholar 

  34. A E Abouelregal Mech. Based Des. Struct. Mach. (2020)

  35. M Malikan and V A Eremeyev Arch. Appl. Mech. (2022). https://doi.org/10.1007/s00419-022-02149-7

    Article  Google Scholar 

  36. I Lasiecka and X Wang J. Diff. Eqns. 259 7610 (2015)

    Article  ADS  Google Scholar 

  37. R Quintanilla Math. Mech. Solids 24 4020 (2019)

    Article  MathSciNet  Google Scholar 

  38. R Quintanilla Appl. Eng. Sci. 1 100006 (2020)

    Google Scholar 

  39. A E Abouelregal, I E Ahmed, M E Nasr, K M Khalil, A Zakria and F A Mohammed Mater. 13 4463 (2020)

    Article  Google Scholar 

  40. A E Abouelregal and H M Sedighi Appl. Phys. A 127 582 (2021)

    Article  ADS  Google Scholar 

  41. A E Aboueregal and H M Sedighi Proc. Inst. Mech. Eng. Part L J. Mater. Design Appl. 5 1004 (2021)

    Google Scholar 

  42. A E Aboueregal, H M Sedighi, A H Shirazi, M Malikan and V A Eremeyev Continuum Mech. Thermodyn. (2021)

  43. A E Abouelregal, H Ersoy and O Civalek Mathematics 9 1536 (2021)

    Article  Google Scholar 

  44. A Raza, T Thumma, K Al-Khaled, S U Khan, K Ghachem, M Alhadri and L Kolsi Waves Rand Compl. Media. (2022) https://doi.org/10.1080/17455030.2022.2067379

    Article  Google Scholar 

  45. L Kolsi, A Raza, K Al-Khaled, K Ghachem, S U Khan and A Ul Haq Waves Rand Compl. Media. (2022) https://doi.org/10.1080/17455030.2022.2038816

    Article  Google Scholar 

  46. J P Gordon, R C C Leite, R S Moore, S P S Porto and J W Whinnery Bull. Am. Phys. Soc. 119 501 (1964)

    Google Scholar 

  47. D M Todorovic, P M Nikolic and A I Bojicic J. Appl. Phys. 85 7716 (1999)

    Article  ADS  Google Scholar 

  48. S Rekhi Sci. Instrum. 74 3820 (2003)

    Article  ADS  Google Scholar 

  49. S Anzellini and S Boccato Crystals 10 459 (2020)

    Article  Google Scholar 

  50. S Pasternak, G Aquilanti, S Pascarelli, R Poloni, B Canny, M V Coulet and L Zhang Rev. Sci. Instrum. 79 085103 (2008).

    Article  ADS  Google Scholar 

  51. B S Yilbas, A Y Al-Dweik, N Al-Aqeeli and H M Al-Qahtani Laser Pulse Heating of Surfaces and Thermal Stress Analysis, Springer International Publishing (2014)

  52. R Bagley Fract. Calcul. Appl. Anal. 10 123 (2007)

    MathSciNet  Google Scholar 

  53. R L Bagley and P J Torvik J. Rheol. 27 201 (1983)

    Article  ADS  Google Scholar 

  54. A Soleiman, A E Abouelregal and K M Khalil Phys. J. Plus 135 851 (2020)

    Article  Google Scholar 

  55. M Caputo and F Mauro Prog. Fract. Differ. Appl. 1 1 (2015)

    Google Scholar 

  56. M Caputo and M Fabrizio Meccanica 52 3043 (2017)

    Article  MathSciNet  Google Scholar 

  57. C Cattaneo Compt. Rend. 247 431 (1958)

    Google Scholar 

  58. P Vernotte Compt. Rend. 246 3154 (1958)

    Google Scholar 

  59. P Vernotte Compt. Rend. 252 2190 (1961)

    Google Scholar 

  60. A E Abouelregal Mater. Res. Express 6 116535 (2019)

    Article  ADS  Google Scholar 

  61. G Honig and U Hirdes J. Comp. Appl. Math. 10 113 (1984)

    Article  Google Scholar 

  62. D Y Tzou, Macro-To Micro-Scale Heat Transfer: The Lagging Behavior, Taylor & Francis (1997)

  63. Y Q Song J. Thermophys. 33 1270 (2012)

    Article  ADS  Google Scholar 

  64. A E Abouelregal Appl. Math. Mech. Engl. Ed. 42 39 (2021)

    Article  Google Scholar 

  65. A E Abouelregal Silicon 12 2837 (2020)

    Article  Google Scholar 

  66. T R Mahapatra Adv. Mater. Struct. 23 1343 (2016)

    Article  Google Scholar 

  67. T R Mahapatra J. Comput. Methods 13 1650015 (2016)

    Article  Google Scholar 

  68. C K Hirwani, P K Mishra and S K Panda Compos. Struct. 265 113768 (2021)

    Article  Google Scholar 

  69. V Kumar and H C Dewangan J. Appl. Mech. 13 2150086 (2021)

    Google Scholar 

  70. K Mehar J. Press. Vessel. Tech. 143 061301 (2021)

    Article  Google Scholar 

  71. V Kumar and H C Dewangan Syst. Signal Process. 170 108883 (2022)

    Article  Google Scholar 

  72. F Selimefendigil and H F Oztop Heat Mass Transfer 129 265 (2019).

    Article  Google Scholar 

  73. V Kumar and H C Dewangan Struct. 293 115709 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors discussed the findings, and the final version of the manuscript was reviewed and approved by all.

Corresponding author

Correspondence to Hakan F. Öztop.

Ethics declarations

Conflict of interest

Concerning this paper's research, writing, and publication, the authors reported no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alfadil, H., Abouelregal, A.E., Civalek, Ö. et al. Effect of the photothermal Moore–Gibson–Thomson model on a rotating viscoelastic continuum body with a cylindrical hole due to the fractional Kelvin-Voigt model. Indian J Phys 97, 829–843 (2023). https://doi.org/10.1007/s12648-022-02434-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-022-02434-9

Keywords

Navigation