Skip to main content
Log in

Hybrid Biodegradable Films from Collagenous Wastes and Natural Polymers for Biomedical Applications

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Biopolymeric films have been the focus of research for the past few decades because they offer favorable advantages compared to synthetic polymeric films in the field of biomedical engineering. In this study, collagen (C) was extracted from skin waste using acetic acid and blended with starch (ST)/soy protein (SP) to prepare C/ST/SP hybrid films. The prepared hybrid films were examined for biocompatibility, physical and chemical properties. The results demonstrated that the strength properties of hybrid films increase as the composition of starch increases while elongation increases as the composition of soy protein increases. Thermogravimetric analysis of select hybrid films showed that the thermal stability of the hybrid films improved moderately. The infrared spectroscopy of hybrid films show functional groups associated with C, ST and SP. Scanning electron microscopy reveals that the hybrid films becomes smoother as the starch concentration increases while increasing soy protein concentration lead to roughness in the hybrid films. The equilibrium swelling, in vitro biodegradation and in vitro cytotoxicity studies show good biostability and biocompatibility for the hybrid films. Therefore, it is envisaged that the promising mechanical, thermal, swelling, biostability and biocompatibility properties of the developed hybrid films suggest a beneficial role for the biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Langer, R., Vacanti, J.: Tissue engineering. Science 260, 920–926 (1993)

    Article  Google Scholar 

  2. Reddi, A.H.: Morphogenesis and tissue engineering of bone and cartilage: inductive signals, stem cells and biomimetic biomaterials. Tissue Eng. 6, 351–359 (2000)

    Article  Google Scholar 

  3. Nerem, R.M., Sambanis, A.: Tissue engineering: from biology to biological substitutes. Tissue Eng. 1, 3–13 (1995)

    Article  Google Scholar 

  4. Lee, C.H., Singla, A., Lee, Y.: Biomedical applications of collagen. Int. J. Pharm. 221, 1–22 (2001)

    Article  Google Scholar 

  5. Sittinger, M., Bujia, J., Rotter, N., Reitzel, D., Minuth, W.W., Burmester, G.R.: Tissue engineering and antologous transplant formation: practical approaches with resorbable biomaterials and new cell culture techniques. Biomaterials 17, 237–242 (1996)

    Article  Google Scholar 

  6. Bergsma, E.J., Brujn, W., Rozema, F.R., Bos, R.M., Boering, G.: Late tissue response to poly(l-lactide) bone plates and screws. Biomaterials 16, 25–31 (1995)

    Article  Google Scholar 

  7. Bergsma, E.J., Rozema, F.R., Bos, R.M., Brujn, W.: Foreign body reactions to resorbable poly(l-lactide) bone plates and screws used for the the fixation of unstable zygomatic fractures. J. Maxillofacial Surg. 51, 666–670 (1993)

    Article  Google Scholar 

  8. Bostmann, O., Hirvensalo, E., Makinen, J., Rokkanen, P.: Foreign body reactions to fracture fixation implants of biodegradable synthetic polymers. J. Bone Jt. Surg. 72B, 592–596 (1990)

    Google Scholar 

  9. Rehm, K.E., Claes, L., Helling, H.J., Hutmacher, D.: Application of a polylactide pin. An open clinical prospective study. In: Leung, K.S., Hung, L.K., Leung, P.C. (eds.) Biodegradable Implants in Fracture Fixation, p. 54. World Scientific, Hong Kong (1994)

    Google Scholar 

  10. Langer, R., Tirrell, D.A.: Designing materials for biology and medicine. Nature 428, 487–492 (2004)

    Article  Google Scholar 

  11. Rosso, F., Marino, G., Giordano, A., Barbarisi, M., Parmeggiani, D., Barbarisi, A.: Smart materials as scaffolds for tissue engineering. J. Cell. Physiol. 203, 465–470 (2005)

    Article  Google Scholar 

  12. Zhang, S.: Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol. 21, 1171–1178 (2003)

    Article  Google Scholar 

  13. Furth, M.E., Atala, A., Dyke, M.E.V.: Smart biomaterials design for tissue engineering and regenerative medicine. Biomaterials 28, 5068–5073 (2007)

    Article  Google Scholar 

  14. Maeda, M., Kadota, K., Kajihara, M., Sano, A., Fujioka, K.: Sustained release of human growth hormone (hGH) from collagen film and evaluation of effect on wound healing in db/db mice. J. Control Release 77, 261–272 (2001)

    Article  Google Scholar 

  15. Gopinath, D., Ahmed, M.R., Gomathi, K., Chitra, K., Sehgal, P.K., Jayakumar, R.: Dermal wound healing processes with curcumin incorporated collagen films. Biomaterials 25, 1911–1917 (2004)

    Article  Google Scholar 

  16. Boyce, S.T., Christanson, D.J., Hsbrough, J.F.: Structure of a collagen-GAG skin substitute optimized for cultured human epidermal keratinocytes. J. Biomed. Mater. Res. 22, 939–957 (1988)

    Article  Google Scholar 

  17. Lee, K.Y., Kwon, I.C., Kim, Y.H., Jo, W.H., Jeong, S.Y.: Preparation of chitosan self-aggregates as a gene delivery system. J. Control Release 51, 213–220 (1998)

    Article  Google Scholar 

  18. Auger, F.A., Rouabhia, M., Goulet, F., Berthod, F., Moulin, V., Germain, L.: Tissue-engineered human skin substitutes developed from collagen-populated hydrated gels: clinical and fundamental applications. Med. Biol. Eng. Comput. 36, 801–812 (1998)

    Article  Google Scholar 

  19. Ma, L., Gao, C., Mao, Z., Zhou, J., Shen, J., Hu, X., Han, C.: Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials 24, 4833–4841 (2003)

    Article  Google Scholar 

  20. Wang, X.H., Li, D.P., Wang, W.J., Feng, Q.L., Cui, F.Z., Xu, Y.X., Song, X.H., Werf, M.V.D.: Crosslinked collagen/chitosan matrix for artificial livers. Biomaterials 24, 3213–3220 (2003)

    Article  Google Scholar 

  21. Huang, L.L.H., Lee, P.C., Chen, L.W., Hsieh, K.H.: Comparison of epoxides on grafting collagen to polyurethane and their effects on cellular growth. J. Biomed. Mater. Res. 39, 630–636 (1998)

    Article  Google Scholar 

  22. Dai, N.T., Williamson, M.R., Khammo, N., Adams, E.F., Coombes, A.G.A.: Composite cell support membranes based on collagen and polycaprolactone for tissue engineering of skin. Biomaterials 25, 4263–4271 (2004)

    Article  Google Scholar 

  23. Toba, T., Nakamura, T., Shimizu, Y., Matsumoto, K., Ohnishi, K., Fukuda, S., Yoshitani, M., Ueda, H., Hori, Y., Endo, K.: Regeneration of canine peroneal nerve with the use of a polyglycolic acid-collagen tube filled with laminin-soaked collagen sponge: a comparative study of collagen sponge and collagen fibers as filling materials for nerve conduits. J. Biomed. Mater. Res. B. 58, 622–630 (2001)

    Article  Google Scholar 

  24. Yang, J., Bei, J., Wang, S.: Enhanced cell affinity of poly (d, l-lactide) by combining plasma treatment with collagen anchorage. Biomaterials 23, 2607–2614 (2002)

    Article  Google Scholar 

  25. Nasir, N.F.M., Raha, M.G., Kadri, N.A., Sahidan, S.I., Rampado, M., Azlan, C.A.: The study of morphological structure, phase structure and molecular structure of collagen-PEO 600K blends for tissue engineering application. Am. J. Biochem. Biotech. 2, 175–179 (2006)

    Article  Google Scholar 

  26. Weadock, K.S., Miller, E.J., Bellincampi, L.D., Zawadsky, J.P., Dunn, M.G.: Physical crosslinking of collagen fibers: comparison of ultraviolet irradiation and dehydrothermal treatment. J. Biomed. Mater. Res. 29, 1373–1379 (1995)

    Article  Google Scholar 

  27. Levy, R.J., Schoen, F.J., Sherman, F.S., Nichols, J., Hawley, M.A., Lund, S.A.: Calcification of subcutaneously implanted type I collagen sponges. Effects of formaldehyde and glutaraldehyde pretreatments. Am. J. Pathol. 122, 71–82 (1986)

    Google Scholar 

  28. Barbani, N., Giusti, P., Lazzeri, L., Polacco, G., Pizzirani, G.: Bioartificial materials based on collagen: 1. collagen cross-linking with gaseous glutaraldehyde. J. Biomater. Sci. Polym. Ed. 7, 461–469 (1996)

    Article  Google Scholar 

  29. Bradley, W.G., Wilkes, G.L.: Some mechanical property considerations of reconstituted collagen for drug release supports. Biomater. Med. Dev. Artif. Organs 5, 159–175 (1977)

    Google Scholar 

  30. Charulatha, V., Rajaram, A.: Influence of different crosslinking treatments on the physical properties of collagen membranes. Biomaterials 24, 759–767 (2003)

    Article  Google Scholar 

  31. Golomb, G., Schoen, F.J., Smith, M.S., Linden, J., Dixon, M., Levy, R.J.: The role of glutaraldehyde-induced crosslinks in calcification of bovine pericardium used in cardiac valve bioprostheses. Am. J. Pathol. 127, 122–130 (1987)

    Google Scholar 

  32. Luyn, M.J.A.V., Wachem, P.B.V., Damink, L.H.H.O., Dijkstra, P.J., Feijen, J., Nieuwenhuis, P.: Secondary cytotoxicity of cross-linked dermal sheep collagens during repeated exposure to human fibroblasts. Biomaterials 13, 1017–1024 (1992)

    Article  Google Scholar 

  33. Luyn, M.J.A.V., Wachem, P.B.V., Damink, L.H.H.O., Dijkstra, P.J., Feijen, J., Nieuwenhuis, P.: Relations between in vitro cytotoxicity and crosslinked dermal sheep collagen. J. Biomed. Mater. Res. 26, 1091–1110 (1992)

    Article  Google Scholar 

  34. Nimni, M.E., Cheung, D., Strates, B., Kodama, M., Skeikh, K.: Chemically modified collagen: a natural biomaterial for tissue replacement. J. Biomed. Mater. Res. 21, 741–771 (1987)

    Article  Google Scholar 

  35. Hardy, P.M., Nicholls, A.C., Rydon, H.N.: The nature of the crosslinking of proteins by glutaraldehyde. Part 1. Interaction of glutaraldehyde with the amino groups of 6-amino hexanoic acid and of α-N-acetyl-lysine. J. Chem. Soc. Perkin Trans I. 958–962 (1976)

  36. Hardy, P.M., Hughes, G.J., Rydon, H.N.: The nature of the crosslinking of proteins by glutaraldehyde. Part 2. The formation of quaternary pyridinium compounds by the action of glutaraldehyde on proteins and the identification of a 3-(2-piperidyl)-pyridinium derivative, anabilysine, as a crosslinking entity. J. Chem. Soc. Perkin Trans I. 2282–2288 (1979)

  37. Speer, D.P., Chvapil, M., Eskelson, C.D., Ulreich, J.: Biological effects of residual glutaraldehyde-tanned collagen biomaterials. J. Biomed. Mater. Res. 14, 753–764 (1980)

    Article  Google Scholar 

  38. Lee, L.L.H.H., Cheung, D.T., Nimni, M.E.: Biochemical changes and cytotoxicity associated with the degradation of polymeric glutaraldehyde derived crosslinks. J. Biomed. Mater. Res. 24, 1185–1201 (1990)

    Article  Google Scholar 

  39. Damink, L.H.H.O., Dijkstra, P.J., Luyn, M.J.A.V., Wachem, P.B.V., Nieuwenhuis, P., Feijen, J.: Glutaraldehyde as a crosslinking agent for collagen-based biomaterials. J. Mater. Sci. Mater. Med. 6, 460–472 (1995)

    Article  Google Scholar 

  40. Yannas, I.V., Lee, E., Orgill, D.P., Skrabut, E.M., Murphy, G.F.: Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc. Natl. Acad. Sci. 86, 933–937 (1989)

    Article  Google Scholar 

  41. Marques, A.P., Reis, R.L., Hunt, J.A.: An in vivo study of the host response to starch-based polymers and composites subcutaneously implanted in rats. Macromol. Biosci. 5, 775–785 (2005)

    Article  Google Scholar 

  42. Reis, R.L., Cunha, A.M.: New degradable load-bearing biomaterials composed of reinforced starch based blends. J. Appl. Med. Polym. 4, 1–5 (2000)

    Google Scholar 

  43. Leonor, I.B., Sousa, R.A., Cunha, A.M., Zhong, Z.P., Greenspan, D., Reis, R.L.: Novel starch thermoplastic/Bioglass composites: mechanical properties, degradation behaviour and in vitro bioactivity. J. Mater. Sci. Mater. Med. 13, 939–945 (2002)

    Article  Google Scholar 

  44. Sousa, R.A., Reis, R.L., Cunha, A.M., Bevis, M.J.: Structure and properties of hydroxylapatite reinforced starch bone–analogue composites. In: Giannini, S., Moroni, A. (eds.) Bioceramics: Proceedings of 13th International Symposium on Ceramics in Medicine, pp. 669–672. Trans Tech Publications, Zurich (2000)

  45. Reis, R.L., Leonor, I.B., Rego, M.T., Cunha, A.M., Fernandes, M.H., Correia, R.N.: Stiff and bioactive composites based on starch, polyethylene and SiO2-CaO.P2O5-MgO glasses and glass-ceramics. In: LeGeros, R.Z., LeGeros, J.P. (eds.) Bioceramics: Proceedings of 11th International Symposium on Ceramics in Medicine, pp. 169–172. World Scientific, New York (1998)

  46. Sousa, R.A., Kalay, G., Reis, R.L., Cunha, A.M., Bevis, M.J.: Injection molding of a starch/EVOH blend aimed as an alternative biomaterial for temporary applications. J. Appl. Polym. Sci. 77, 1303–1315 (2000)

    Article  Google Scholar 

  47. Reis, R.L., Cunha, A.M., Bevis, M.J.: Using nonconventional processing to develop an isotropic and biodegradable composites of starch-based thermoplastics reinforced with bone-like ceramics. Med. Plast. Biomater. 4, 46–50 (1997)

    Google Scholar 

  48. Pereira, C.S., Cunha, A.M., Reis, R.L., Vazquez, B., Roman, J.S.: New starch-based thermoplastic hydrogels for use as bone cements or drug-delivery carriers. J. Mater. Sci. Mater. Med. 9, 825–833 (1998)

    Article  Google Scholar 

  49. Espigares, I., Elvira, C., Mano, J.F., Vazquez, B., Roman, J.S., Reis, R.L.: New partially degradable and bioactive acrylic bone cements based on starch blends and ceramic fillers. Biomaterials 23, 1883–1895 (2002)

    Article  Google Scholar 

  50. Boesel, L.F., Mano, J.F., Reis, R.L.: Optimization of the formulation and mechanical properties of starch based partially degradable bone cements. J. Mater. Sci. Mater. Med. 15, 73–83 (2004)

    Article  Google Scholar 

  51. Elvira, C., Mano, J.F., Roman, J.S., Reis, R.L.: Starch based biodegradable hydrogels with potential biomedical applications as drug delivery systems. Biomaterials 23, 1955–1966 (2002)

    Article  Google Scholar 

  52. Malafaya, P.B., Elvira, C., Gallardo, A., Roman, J.S., Reis, R.L.: Porous starch-based drug delivery systems processed by a microwave treatment. J. Biomater. Sci. Polym. Ed. 12, 1227–1241 (2001)

    Article  Google Scholar 

  53. Gomes, M.E., Ribeiro, A.S., Malafaya, P.B., Reis, R.L., Cunha, A.M.: A new approach based on injection moulding to produce biodegradable starch based polymeric scaffolds: morphology, mechanical and degradation behaviour. Biomaterials 22, 883–889 (2001)

    Article  Google Scholar 

  54. Gomes, M.E., Reis, R.L., Cunha, A.M., Blitterswijk, C.A., Bruijn, J.D.D.: Cytocompatibility and response of osteoblastic-like cells to starch based polymers: effects of several additives and processing conditions. Biomaterials 22, 1911–1917 (2001)

    Article  Google Scholar 

  55. Gomes, M.E., Godinho, J.S., Tchalamov, D., Cunha, A.M., Reis, R.L.: Alternative tissue engineering scaffolds based on starch: processing methodologies, morphology, degradation and mechanical properties. Mater. Sci. Eng. C. 20, 19–26 (2002)

    Article  Google Scholar 

  56. Mo, X., Hu, J., Sun, X.S., Ratto, J.A.: Compression and tensile strength of low-density straw-protein particle board. Ind. Crops Prod. 14, 1–9 (2001)

    Article  Google Scholar 

  57. Were, L., Hettiarachchy, N.S., Coleman, M.: Properties of cysteine-added soy protein-wheat gluten films. J. Food Sci. 64, 514–518 (1999)

    Article  Google Scholar 

  58. Vaz, C.M., Fossen, M., Tuil, R.F.V., Graaf, L.A.D., Reis, R.L., Cunha, A.M.: Casein and soybean protein-based thermoplastics and composites as alternative biodegradable polymers for biomedical applications. J. Biomed. Mater. Res. 65A, 60–70 (2003)

    Article  Google Scholar 

  59. Hua, Y., Cui, S.W., Wang, Q.: Gelling property of soy protein-gum mixtures. Food Hydrocoll. 17, 889–894 (2003)

    Article  Google Scholar 

  60. Rhim, J.W., Gennadios, A., Weller, C.L., Cezeirat, C., Hanna, M.A.: Soy protein isolate-dialdehyde starch films. Ind. Crop Prod. 8, 195–203 (1998)

    Article  Google Scholar 

  61. Tonkova, E.V., Nustorova, M., Gushterova, A.: New protein hydrolysates from collagen wastes used as peptone for bacterial growth. Curr. Microbiol. 54, 54–67 (2007)

    Article  Google Scholar 

  62. Li, G.Y., Fukunaga, S., Takenouchi, K., Nakamura, F.: Physiological and cell biological properties in vitro of collagen isolated from calf limed splits. J. Soc. Leather Technol. Chem. 88, 66–71 (2004)

    Google Scholar 

  63. Thanikaivelan, P., Rao, J.R., Nair, B.U., Ramasami, T.: Zero discharge tanning: a shift from chemical to biocatalytic leather processing. Environ. Sci. Technol. 36, 4187–4194 (2002)

    Article  Google Scholar 

  64. Woessner, J.F.: The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch. Biochem. Biophys. 93, 440–447 (1961)

    Article  Google Scholar 

  65. Sripriya, R., Kumar, R., Balaji, S., Kumar, M.S., Seghal, P.K.: Characterizations of polyanionic collagen prepared by linking additional carboxylic groups. React. Funct. Polym. 71, 62–69 (2011)

    Article  Google Scholar 

  66. Scheide, J.D.: Process for the extraction of protein from soy flour. U.S. Patent 4,704,289 (1987)

  67. Shantha, K.L., Ravichandran, P., Rao, K.P.: Azo polymeric hydrogels for colon targeted drug delivery. Biomaterials 16, 1313–1318 (1995)

    Article  Google Scholar 

  68. Anumary, A., Thanikaivelan, P., Ashokkumar, M., Kumar, R., Sehgal, P.K., Chandrasekaran, B.: Synthesis and characterization of hybrid biodegradable films from bovine hide collagen and cellulose derivatives for biomedical applications. Soft Mater. (in press)

  69. Shanmugasundaram, N., Ravichandran, P., Reddy, P.N., Ramamurty, N., Pal, S., Rao, K.P.: Collagen-chitosan polymeric scaffolds for the in vitro culture of human epidermoid carcinoma cells. Biomaterials 22, 1943–1951 (2001)

    Article  Google Scholar 

  70. Fang, M., Fowler, P.A., Tomkinson, J., Hill, C.A.S.: The preparation and characterisation of a series of chemically modified potato starches. Carbohyd. Polym. 47, 245–252 (2002)

    Article  Google Scholar 

  71. Schmidt, V., Giacomelli, C., Soldi, V.: Thermal stability of films formed by soy protein isolate-sodium dodecyl sulfate. Polym. Degrad. Stab. 87, 25–31 (2005)

    Article  Google Scholar 

  72. Chiellini, E., Cinelli, P., Fernandes, E.G., Kenawy, E.S., Lazzeri, A.: Gelatin-based blends and composites. morphological and thermal mechanical characterization. Biomacromol. 2, 806–811 (2001)

    Article  Google Scholar 

  73. Silva, S.S., Goodfellow, B.J., Benesch, J., Rocha, J., Mano, J.F., Reis, R.L.: Morphology and miscibility of chitosan/soy protein blended membranes. Carbohyd. Polym. 70, 25–31 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank Council of Scientific and Industrial Research (CSIR), India for their financial support under Young Scientist Award project. The authors also wish to thank Dr. A.B. Mandal, Director, Central Leather Research Institute, India for his constant encouragement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. Thanikaivelan or B. Chandrasekaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murali, R., Anumary, A., Ashokkumar, M. et al. Hybrid Biodegradable Films from Collagenous Wastes and Natural Polymers for Biomedical Applications. Waste Biomass Valor 2, 323–335 (2011). https://doi.org/10.1007/s12649-011-9072-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-011-9072-8

Keywords

Navigation