Skip to main content
Log in

Unveiling the Variability and Multiscale Structure of Soybean Hulls for Biotechnological Valorization

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Soybean hulls (SBH) are an important agroindustrial residue that is highly susceptible to cellulolytic enzymatic digestion. The multiscale structure of this biomass should be able to inform on the origins of its digestibility, but such relationships are currently unknown. This work employs multimodal techniques to learn SBH variability and multiscale structure. Tissue-scale images obtained by electron microscopy, X-ray microtomography, and Raman spectromicroscopy reveal tissue ruptures, lignin localized in the hilum region, and oriented, quite pure cellulose in palisade and hourglass cells of the extra-hilar region. Such specificities of SBH cellulose are reinforced by X-ray diffraction showing cellulose crystallites ~ 20% wider than in typical lignocellulosic biomass. SBH are also remarkably more porous than other lignocellulosic feedstocks in the critical pore size (> ~ 10 nm) for enzyme accessibility. Enzymatic hydrolysis confirmed the low recalcitrance of SBH, demonstrating high yields (e.g., 80% glucose) without SBH pretreatment. These results provide a basis for rationalizing the low recalcitrance of SBH, paving the way for novel developments in SBH biotechnological valorization.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data will be available on reasonable request.

Code Availability

Not applicable.

References

  1. Preece, K.E., Hooshyar, N., Zuidam, N.J.: Whole soybean protein extraction processes: a review. Innov. Food Sci. Emerg. Technol. 43, 163–172 (2017). https://doi.org/10.1016/j.ifset.2017.07.024

    Article  Google Scholar 

  2. USDA: World Agricultural Supply and Demand Estimates (2020)

  3. FAO: FAOSTAT Statistical Database. FAO (2020)

  4. Liu, H.-M., Li, H.-Y.: Application and conversion of soybean hulls. In: Kasai, M. (Org.) Soybean—The Basis of Yield, Biomass and Productivity. InTech (2017)

  5. Porfiri, M.C., Wagner, J.R.: Extraction and characterization of soy hull polysaccharide-protein fractions. Analysis of aggregation and surface rheology. Food Hydrocolloids 79, 40–47 (2018). https://doi.org/10.1016/j.foodhyd.2017.11.050

    Article  Google Scholar 

  6. Bewley, J.D., Black, M.: Seeds: Physiology of Development and Germination. Springer, Boston, MA (1994)

    Book  Google Scholar 

  7. Souza, F.H.D.D., Marcos-Filho, J.: The seed coat as a modulator of seed-environment relationships in Fabaceae. Rev. Bras. Bot. 24, 365–375 (2001). https://doi.org/10.1590/S0100-84042001000400002

    Article  Google Scholar 

  8. Ma, F.: Cracks in the palisade cuticle of soybean seed coats correlate with their permeability to water. Ann. Bot. 94, 213–228 (2004). https://doi.org/10.1093/aob/mch133

    Article  Google Scholar 

  9. Corredor, D.Y., Sun, X.S., Salazar, J.M., Hohn, K.L., Wang, D.: Enzymatic hydrolysis of soybean hulls using dilute acid and modified steam-explosion pretreatments. J Biobased Mat Bioenergy. 2, 43–50 (2008). https://doi.org/10.1166/jbmb.2008.201

    Article  Google Scholar 

  10. Yoo, J., Alavi, S., Vadlani, P., Amanor-Boadu, V.: Thermo-mechanical extrusion pretreatment for conversion of soybean hulls to fermentable sugars. Biores. Technol. 102, 7583–7590 (2011). https://doi.org/10.1016/j.biortech.2011.04.092

    Article  Google Scholar 

  11. Sessa, D.J.: Processing of soybean hulls to enhance the distribution and extraction of value-added proteins. J. Sci. Food Agric. 84, 75–82 (2004). https://doi.org/10.1002/jsfa.1612

    Article  Google Scholar 

  12. Qing, Q., Guo, Q., Zhou, L., Gao, X., Lu, X., Zhang, Y.: Comparison of alkaline and acid pretreatments for enzymatic hydrolysis of soybean hull and soybean straw to produce fermentable sugars. Ind. Crops Prod. 109, 391–397 (2017). https://doi.org/10.1016/j.indcrop.2017.08.051

    Article  Google Scholar 

  13. Ferrer, A., Salas, C., Rojas, O.J.: Dewatering of MNFC containing microfibrils and microparticles from soybean hulls: mechanical and transport properties of hybrid films. Cellulose 22, 3919–3928 (2015). https://doi.org/10.1007/s10570-015-0768-y

    Article  Google Scholar 

  14. Sinclair, A., Jiang, L., Bajwa, D., Bajwa, S., Tangpong, S., Wang, X.: Cellulose nanofibers produced from various agricultural residues and their reinforcement effects in polymer nanocomposites: research article. J. Appl. Polym. Sci. 135, 46304 (2018). https://doi.org/10.1002/app.46304

    Article  Google Scholar 

  15. Debiagi, F., Faria-Tischer, P.C.S., Mali, S.: Nanofibrillated cellulose obtained from soybean hull using simple and eco-friendly processes based on reactive extrusion. Cellulose 27, 1975–1988 (2020). https://doi.org/10.1007/s10570-019-02893-0

    Article  Google Scholar 

  16. Quosai, P., Anstey, A., Mohanty, A.K., Misra, M.: Characterization of biocarbon generated by high- and low-temperature pyrolysis of soy hulls and coffee chaff: for polymer composite applications. R. Soc. open sci. 5, 171970 (2018). https://doi.org/10.1098/rsos.171970

    Article  Google Scholar 

  17. Herde, Z.D., Dharmasena, R., Sumanasekera, G., Tumuluru, J.S., Satyavolu, J.: Impact of hydrolysis on surface area and energy storage applications of activated carbons produced from corn fiber and soy hulls. Carbon Resour. Convers. 3, 19–28 (2020). https://doi.org/10.1016/j.crcon.2019.12.002

    Article  Google Scholar 

  18. Wang, S., Shao, G., Yang, J., Liu, J., Wang, J., Zhao, H., Yang, L., Liu, H., Zhu, D., Li, Y., Jiang, L.: The production of gel beads of soybean hull polysaccharides loaded with soy isoflavone and their pH-dependent release. Food Chem. 313, 126095 (2020). https://doi.org/10.1016/j.foodchem.2019.126095

    Article  Google Scholar 

  19. Zhang, Y.J., Liu, Q., Zhang, W.M., Zhang, Z.J., Wang, W.L., Zhuang, S.: Gastrointestinal microbial diversity and short-chain fatty acid production in pigs fed different fibrous diets with or without cell wall-degrading enzyme supplementation. Livest. Sci. 207, 105–116 (2018). https://doi.org/10.1016/j.livsci.2017.11.017

    Article  Google Scholar 

  20. Cortivo, P.R.D., Hickert, L.R., Hector, R., Ayub, M.A.Z.: Fermentation of oat and soybean hull hydrolysates into ethanol and xylitol by recombinant industrial strains of Saccharomyces cerevisiae under diverse oxygen environments. Ind. Crops Prod. 113, 10–18 (2018). https://doi.org/10.1016/j.indcrop.2018.01.010

    Article  Google Scholar 

  21. Mielenz, J.R., Bardsley, J.S., Wyman, C.E.: Fermentation of soybean hulls to ethanol while preserving protein value. Biores. Technol. 100, 3532–3539 (2009). https://doi.org/10.1016/j.biortech.2009.02.044

    Article  Google Scholar 

  22. Camiscia, P., Giordano, E.D.V., Brassesco, M.E., Fuciños, P., Pastrana, L., Cerqueira, M.F., Picó, G.A., Valetti, N.W.: Comparison of soybean hull pre-treatments to obtain cellulose and chemical derivatives: physical chemistry characterization. Carbohydr. Polym. 198, 601–610 (2018). https://doi.org/10.1016/j.carbpol.2018.06.125

    Article  Google Scholar 

  23. Bittencourt, G.A., de Souza Vandenberghe, L.P., Valladares-Diestra, K., Wedderhoff Herrmann, L., de Mello, A.F.M., Vásquez, Z.S., Karp, S.G., Soccol, C.R.: Soybean hulls as carbohydrate feedstock for medium to high-value biomolecule production in biorefineries: a review. Bioresour. Technol. 339, 125594 (2021). https://doi.org/10.1016/j.biortech.2021.125594

  24. Fratzl, P., Weinkamer, R.: Nature’s hierarchical materials. Prog. Mater Sci. 52, 1263–1334 (2007). https://doi.org/10.1016/j.pmatsci.2007.06.001

    Article  Google Scholar 

  25. Gibson, L.J.: The hierarchical structure and mechanics of plant materials. J. R. Soc. Interface. 9, 2749–2766 (2012). https://doi.org/10.1098/rsif.2012.0341

    Article  Google Scholar 

  26. Templeton, D.W., Sluiter, A.D., Hayward, T.K., Hames, B.R., Thomas, S.R.: Assessing corn stover composition and sources of variability via NIRS. Cellulose 16, 621–639 (2009). https://doi.org/10.1007/s10570-009-9325-x

    Article  Google Scholar 

  27. Williams, C.L., Westover, T.L., Emerson, R.M., Tumuluru, J.S., Li, C.: Sources of biomass feedstock variability and the potential impact on biofuels production. Bioenerg. Res. 9, 1–14 (2016). https://doi.org/10.1007/s12155-015-9694-y

    Article  Google Scholar 

  28. Negrão, D.R., Ling, L.Y., Bordonal, R.O., Driemeier, C.: Microscale analyses of mineral particles in sugar cane bagasse and straw shed light on how debris can be incorporated into biomass. Energy Fuels. 33, 9965–9973 (2019). https://doi.org/10.1021/acs.energyfuels.9b02651

    Article  Google Scholar 

  29. Hames, B., Ruiz, R., Scarlata, C., Sluiter, A., Sluiter, J., Templeton, D.: Preparation of Samples for Compositional Analysis. National Renewable Energy Laboratory, Golden (2008)

    Google Scholar 

  30. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D.: Determination of Ash in Biomass. National Renewable Energy Laboratory, Golden (2008)

    Google Scholar 

  31. Technical, A.: Crude Protein--Combustion Method. In: AACC International Approved Methods. AACC International (2009)

  32. Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D.: Determination of Extractives in Biomass. National Renewable Energy Laboratory, Golden (2008)

    Google Scholar 

  33. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D.: Determination of Structural Carbohydrates and Lignin in Biomass. National Renewable Energy Laboratory, Golden (2012)

    Google Scholar 

  34. Rasband, W.S.: ImageJ. U. S. National Institutes of Health, Bethesda, MD (1997)

    Google Scholar 

  35. Marques, J.P.R., Hoy, J.W., Appezzato-da-Glória, B., Viveros, A.F.G., Vieira, M.L.C., Baisakh, N.: Sugarcane cell wall-associated defense responses to infection by Sporisorium scitamineum. Front. Plant Sci. 9, 698 (2018). https://doi.org/10.3389/fpls.2018.00698

    Article  Google Scholar 

  36. Ensikat, H.J., Ditsche-Kuru, P., Barthlott, W.: Scanning electron microscopy of plant surfaces: simple but sophisticated methods for preparation and examination. Microscopy 248–255 (2010)

  37. Oliveira, R.P., Driemeier, C.: CRAFS: a model to analyze two-dimensional X-ray diffraction patterns of plant cellulose. J Appl Crystallogr. 46, 1196–1210 (2013). https://doi.org/10.1107/S0021889813014805

    Article  Google Scholar 

  38. Driemeier, C., Mendes, F.M., Santucci, B.S., Pimenta, M.T.B.: Cellulose co-crystallization and related phenomena occurring in hydrothermal treatment of sugarcane bagasse. Cellulose 22, 2183–2195 (2015). https://doi.org/10.1007/s10570-015-0638-7

    Article  Google Scholar 

  39. Driemeier, C., Mendes, F.M., Oliveira, M.M.: Dynamic vapor sorption and thermoporometry to probe water in celluloses. Cellulose 19, 1051–1063 (2012). https://doi.org/10.1007/s10570-012-9727-z

    Article  Google Scholar 

  40. Blasi, D., Drouillard, J., Titgemeyer, E., Paisley, S.: Soybean Hulls Composition and Feeding Value for Beef and Dairy Cattle. Kansas State University, Manhattan (2000)

    Google Scholar 

  41. Cassales, A., de Souza-Cruz, P.B., Rech, R., Záchia Ayub, M.A.: Optimization of soybean hull acid hydrolysis and its characterization as a potential substrate for bioprocessing. Biomass Bioenerg. 35, 4675–4683 (2011). https://doi.org/10.1016/j.biombioe.2011.09.021

    Article  Google Scholar 

  42. Carpita, N.C., Gibeaut, D.M.: Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 3, 1–30 (1993). https://doi.org/10.1111/j.1365-313X.1993.tb00007.x

    Article  Google Scholar 

  43. Aden, A., Ruth, M., Ibsen, K., Jechura, J., Neeves, K., Sheehan, J., Wallace, B., Montague, L., Slayton, A., Lukas, J.: Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. NREL - National Renewable Energy Laboratory (2002)

  44. Mullin, W.J., Xu, W.: Study of Soybean Seed Coat Components and Their Relationship to Water Absorption. J. Agric. Food Chem. 49, 5331–5335 (2001). https://doi.org/10.1021/jf010303s

    Article  Google Scholar 

  45. Laser, M., Schulman, D., Allen, S.G., Lichwa, J., Antal, M.J., Lynd, L.R.: A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Biores. Technol. 81, 33–44 (2002). https://doi.org/10.1016/S0960-8524(01)00103-1

    Article  Google Scholar 

  46. Lima, C.S., Rabelo, S.C., Ciesielski, P.N., Roberto, I.C., Rocha, G.J.M., Driemeier, C.: Multiscale alterations in sugar cane bagasse and straw submitted to alkaline deacetylation. ACS Sustain. Chem. Eng. 6, 3796–3804 (2018). https://doi.org/10.1021/acssuschemeng.7b04158

    Article  Google Scholar 

  47. Lourenço, A., Pereira, H.: Compositional variability of lignin in biomass. In: Poletto, M. (org.) Lignin—Trends and Applications. InTech (2018)

  48. Gierlinger, N., Keplinger, T., Harrington, M., Schwanninger, M.: Raman imaging of lignocellulosic feedstock. In: Kadla, J. (Org.) Cellulose—Biomass Conversion. InTech (2013)

  49. Wiley, J.H., Atalla, R.H.: Raman spectra of celluloses. In: Atalla, R.H. (Org.) The structures of cellulose, pp. 151–168. American Chemical Society, Washington, DC (1987)

  50. Schulz, H., Baranska, M.: Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib. Spectrosc. 43, 13–25 (2007). https://doi.org/10.1016/j.vibspec.2006.06.001

    Article  Google Scholar 

  51. Gierlinger, N., Sapei, L., Paris, O.: Insights into the chemical composition of Equisetum hyemale by high resolution Raman imaging. Planta 227, 969–980 (2008). https://doi.org/10.1007/s00425-007-0671-3

    Article  Google Scholar 

  52. Sjöberg, B., Foley, S., Cardey, B., Enescu, M.: An experimental and theoretical study of the amino acid side chain Raman bands in proteins. Spectrochim. Acta Part A 128, 300–311 (2014). https://doi.org/10.1016/j.saa.2014.02.080

    Article  Google Scholar 

  53. Rackis, J.J., Anderson, R.L., Sasame, H.A., Smith, A.K., VanEtten, C.H.: Soybean amino acids, amino acids in soybean hulls and oil meal fractions. J. Agric. Food Chem. 9, 409–412 (1961). https://doi.org/10.1021/jf60117a021

    Article  Google Scholar 

  54. Agarwal, U.P., Ralph, S.A.: FT-Raman spectroscopy of wood: identifying contributions of lignin and carbohydrate polymers in the spectrum of black spruce (Picea Mariana). Appl Spectrosc. 51, 1648–1655 (1997). https://doi.org/10.1366/0003702971939316

    Article  Google Scholar 

  55. Ji, Z., Ma, J.-F., Zhang, Z.-H., Xu, F., Sun, R.-C.: Distribution of lignin and cellulose in compression wood tracheids of Pinus yunnanensis determined by fluorescence microscopy and confocal Raman microscopy. Ind. Crops Prod. 47, 212–217 (2013). https://doi.org/10.1016/j.indcrop.2013.03.006

    Article  Google Scholar 

  56. Nishiyama, Y., Langan, P., Chanzy, H.: Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 124, 9074–9082 (2002). https://doi.org/10.1021/ja0257319

    Article  Google Scholar 

  57. Driemeier, C., Francisco, L.H.: X-ray diffraction from faulted cellulose I constructed with mixed Iα–Iβ stacking. Cellulose 21, 3161–3169 (2014). https://doi.org/10.1007/s10570-014-0390-4

    Article  Google Scholar 

  58. Leppänen, K., Andersson, S., Torkkeli, M., Knaapila, M., Kotelnikova, N., Serimaa, R.: Structure of cellulose and microcrystalline cellulose from various wood species, cotton and flax studied by X-ray scattering. Cellulose 16, 999–1015 (2009). https://doi.org/10.1007/s10570-009-9298-9

    Article  Google Scholar 

  59. Müller, M., Burghammer, M., Sugiyama, J.: Direct investigation of the structural properties of tension wood cellulose microfibrils using microbeam X-ray fibre diffraction. Holzforschung 60, 474–479 (2006). https://doi.org/10.1515/HF.2006.078

    Article  Google Scholar 

  60. Fontan, C.F., Chirife, J., Sancho, E., Iglesias, H.A.: Analysis of a Model for Water Sorption Phenomena in Foods. J Food Science. 47, 1590–1594 (1982). https://doi.org/10.1111/j.1365-2621.1982.tb04989.x

    Article  Google Scholar 

  61. Brunauer, S., Deming, L.S., Deming, W.E., Teller, E.: On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc. 62, 1723–1732 (1940). https://doi.org/10.1021/ja01864a025

    Article  Google Scholar 

  62. A. Aviara, N.: Moisture sorption isotherms and isotherm model performance evaluation for food and agricultural products. In: Kyzas, G. E Lazaridis, N. (Orgs.) Sorption in 2020s. IntechOpen (2020)

  63. Maziero, P., Jong, J., Mendes, F.M., Gonçalves, A.R., Eder, M., Driemeier, C.: Tissue-specific cell wall hydration in sugarcane stalks. J. Agric. Food Chem. 61, 5841–5847 (2013). https://doi.org/10.1021/jf401243c

    Article  Google Scholar 

  64. Aviara, N.A., Ajibola, O.O., Oni, S.A.: Sorption equilibrium and thermodynamic characteristics of soya bean. Biosys. Eng. 87, 179–190 (2004). https://doi.org/10.1016/j.biosystemseng.2003.11.006

    Article  Google Scholar 

  65. Ertugay, M.F., Certel, M.: Moisture sorption isotherms of cereals at different temperatures. Food Nahrung 44, 107–109 (2000). https://doi.org/10.1002/(SICI)1521-3803(20000301)44:2%3c107::AID-FOOD107%3e3.0.CO;2-F

    Article  Google Scholar 

  66. Driemeier, C., Oliveira, M.M., Curvelo, A.A.S.: Lignin contributions to the nanoscale porosity of raw and treated lignocelluloses as observed by calorimetric thermoporometry. Ind. Crops Prod. 82, 114–117 (2016). https://doi.org/10.1016/j.indcrop.2015.11.084

    Article  Google Scholar 

  67. Ding, S.-Y., Liu, Y.-S., Zeng, Y., Himmel, M.E., Baker, J.O., Bayer, E.A.: How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science 338, 1055–1060 (2012). https://doi.org/10.1126/science.1227491

    Article  Google Scholar 

  68. Donaldson, L.A., Wong, K.K.Y., Mackie, K.L.: Ultrastructure of steam-exploded wood. Wood Sci. Technol. 22, 103–114 (1988). https://doi.org/10.1007/BF00355846

    Article  Google Scholar 

  69. Rojas, M.J., Siqueira, P.F., Miranda, L.C., Tardioli, P.W., Giordano, R.L.C.: Sequential proteolysis and cellulolytic hydrolysis of soybean hulls for oligopeptides and ethanol production. Ind. Crops Prod. 61, 202–210 (2014). https://doi.org/10.1016/j.indcrop.2014.07.002

    Article  Google Scholar 

  70. Islam, S.M.M., Li, Q., Loman, A.A., Ju, L.-K.: CO2-H2O based pretreatment and enzyme hydrolysis of soybean hulls. Enzyme Microb. Technol. 106, 18–27 (2017). https://doi.org/10.1016/j.enzmictec.2017.06.011

    Article  Google Scholar 

  71. Payne, C.M., Knott, B.C., Mayes, H.B., Hansson, H., Himmel, M.E., Sandgren, M., Ståhlberg, J., Beckham, G.T.: Fungal cellulases. Chem. Rev. 115, 1308–1448 (2015). https://doi.org/10.1021/cr500351c

    Article  Google Scholar 

Download references

Acknowledgements

This research used resources of the Brazilian Synchrotron Light Laboratory (LNLS), an open national facility operated by the Brazilian Centre for Research in Energy and Materials (CNPEM) for the Brazilian Ministry for Science, Technology and Innovations (MCTI). The IMX beamline staff is acknowledged for the assistance during the microtomography experiments (proposal IMX 20170623). We acknowledge the Brazilian Nanotechnology Laboratory (LNNano) for the access and support with the Raman spectromicrometer. Funding from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Grant 18/07033-5) are acknowledged.

Funding

This work was supported by CNPq, FAPESP (Grant number 18/07033-5) and LNLS (Grant number IMX 20170623).

Author information

Authors and Affiliations

Authors

Contributions

DFR: Conceptualization, investigation, writing—original draft, writing—review and editing. DRN: Investigation. CD: Conceptualization, investigation, writing—review and editing, supervision.

Corresponding author

Correspondence to Carlos Driemeier.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical Approval

Not applicable.

Consent to Participate

All authors agreed with the content of the manuscript, gave explicit consent to submit it and obtained consent from the responsible authorities at the organizations where the work has been carried out.

Consent for Publication

All authors agreed with the publication of the submitted manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosso, D.F., Negrão, D.R. & Driemeier, C. Unveiling the Variability and Multiscale Structure of Soybean Hulls for Biotechnological Valorization. Waste Biomass Valor 13, 2095–2108 (2022). https://doi.org/10.1007/s12649-021-01655-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01655-z

Keywords

Navigation