Skip to main content
Log in

Influence of Phenolic Compounds in Obtaining Aromatic Hydrocarbons During the Thermal and Catalytic Co-pyrolysis of Peanut Shells and Plastic Waste

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

During the co-pyrolysis of agro-industrial and plastic waste, phenolic compounds (Phe-OH) undergo hydrogenation and dehydration reactions that lead to the formation of aromatic hydrocarbons. In order to demonstrate this, peanut shell pyrolysis reactions were carried out with polyethylene. Peanut shells have a high percentage of lignin, the main source of phenols. Two conditions were analyzed to study the reaction mechanism. On the one hand, the behavior of Phe-OH in the presence of polyethylene (PE) was studied to know the influence of hydrogen atoms on the reaction medium. In this sense, it was observed that the addition of hydrogen-rich chains generated an increase in the yield to aromatic hydrocarbons (AHC). The results obtained allow us to suggest that phenolic compounds act as a strong hydrogen acceptor when deoxygenated. On the other hand, the improvement in aromatic hydrocarbon formation was studied with the use of a zeolitic catalyst. In this case, the best yields to the aromatic compounds of interest were obtained. This was due to the presence of Brönsted acid sites in the catalyst that provide the route for obtaining these aromatic rings. It was concluded that both reaction routes contributed to obtaining 33 wt% of selectivity to benzene, toluene and xylene (BTX).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated and analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Betemps, G.R., Silveira, L.A., Sampaio, D.M., Bispo, M.D., Krause, L.C., Caramão, E.B., Sanches Filho, P.J., da Cunha, M.E.: Chromatographic characterization of bio-oil generated from rapid pyrolysis of rice husk in stainless steel reactor. Microchem. J. 134, 218–223 (2017). https://doi.org/10.1016/j.microc.2017.06.007

    Article  Google Scholar 

  2. Ghorbannezhad, P., Park, S., Onwudili, J.A.: Co-pyrolysis of biomass and plastic waste over zeolite- and sodium-based catalysts for enhanced yields of hydrocarbon products. Waste Manag. (2020). https://doi.org/10.1016/j.wasman.2019.12.006

    Article  Google Scholar 

  3. Uemura, K., Appari, S., Kudo, S., Hayashi, J.I., Einaga, H., Norinaga, K.: In-situ reforming of the volatiles from fast pyrolysis of ligno-cellulosic biomass over zeolite catalysts for aromatic compound production. Fuel Process. Technol. (2015). https://doi.org/10.1016/j.fuproc.2014.10.002

    Article  Google Scholar 

  4. Biswas, B., Pandey, N., Bisht, Y., Singh, R., Kumar, J., Bhaskar, T.: Pyrolysis of agricultural biomass residues: comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresour. Technol. 237, 57–63 (2017). https://doi.org/10.1016/j.biortech.2017.02.046

    Article  Google Scholar 

  5. Gunasee, S.D., Danon, B., Görgens, J.F., Mohee, R.: Co-pyrolysis of LDPE and cellulose: synergies during devolatilization and condensation. J. Anal. Appl. Pyrolysis 126, 307–314 (2017). https://doi.org/10.1016/j.jaap.2017.05.016

    Article  Google Scholar 

  6. Abnisa, F., WanDaud, W.M.A.: A review on co-pyrolysis of biomass: an optional technique to obtain a high-grade pyrolysis oil. Energy Convers. Manag. 87, 71–85 (2014). https://doi.org/10.1016/j.enconman.2014.07.007

    Article  Google Scholar 

  7. Suriapparao, D.V., Boruah, B., Raja, D., Vinu, R.: Microwave assisted co-pyrolysis of biomasses with polypropylene and polystyrene for high quality bio-oil production. Fuel Process. Technol. 175, 64–75 (2018). https://doi.org/10.1016/j.fuproc.2018.02.019

    Article  Google Scholar 

  8. Las exportaciones de maní de Argentina aumentaron un 16% en 2019, http://bccba.com.ar/las-exportaciones-mani-argentina-aumentaron-un-16-2019-8874.html

  9. Contaminación por plástico, https://www.nationalgeographic.com.es/naturaleza/grandes-reportajes/ahogados-mar-plastico_12712/12

  10. Zhang, X., Lei, H., Zhu, L., Qian, M., Zhu, X., Wu, J., Chen, S.: Enhancement of jet fuel range alkanes from co-feeding of lignocellulosic biomass with plastics via tandem catalytic conversions. Appl. Energy 173, 418–430 (2016). https://doi.org/10.1016/j.apenergy.2016.04.071

    Article  Google Scholar 

  11. Wang, K., Kim, K.H., Brown, R.C.: Catalytic pyrolysis of individual components of lignocellulosic biomass. Green Chem. 16, 727–735 (2014). https://doi.org/10.1039/c3gc41288a

    Article  Google Scholar 

  12. Zhang, B., Zhong, Z., Ding, K., Song, Z.: Production of aromatic hydrocarbons from catalytic co-pyrolysis of biomass and high density polyethylene: analytical Py-GC/MS study. Fuel 139, 622–628 (2015). https://doi.org/10.1016/j.fuel.2014.09.052

    Article  Google Scholar 

  13. Kong, J., Zhao, R., Bai, Y., Li, G., Zhang, C., Li, F.: Study on the formation of phenols during coal flash pyrolysis using pyrolysis-GC/MS. Fuel Process. Technol. 127, 41–46 (2014). https://doi.org/10.1016/j.fuproc.2014.06.004

    Article  Google Scholar 

  14. Kim, J.Y., Heo, S., Choi, J.W.: Effects of phenolic hydroxyl functionality on lignin pyrolysis over zeolite catalyst. Fuel 232, 81–89 (2018). https://doi.org/10.1016/j.fuel.2018.05.133

    Article  Google Scholar 

  15. Rahman, M.M., Liu, R., Cai, J.: Catalytic fast pyrolysis of biomass over zeolites for high quality bio-oil—a review. Fuel Process. Technol. 180, 32–46 (2018). https://doi.org/10.1016/j.fuproc.2018.08.002

    Article  Google Scholar 

  16. Rezaei, P.S., Shafaghat, H., Daud, W.M.A.W.: Production of green aromatics and olefins by catalytic cracking of oxygenate compounds derived from biomass pyrolysis: a review. Appl. Catal. A 469, 490–511 (2014). https://doi.org/10.1016/j.apcata.2013.09.036

    Article  Google Scholar 

  17. Nishu, Liu, R., Rahman, M.M., Sarker, M., Chai, M., Li, C., Cai, J.: A review on the catalytic pyrolysis of biomass for the bio-oil production with ZSM-5: focus on structure. Fuel Process. Technol. 199, 106301 (2020). https://doi.org/10.1016/j.fuproc.2019.106301

    Article  Google Scholar 

  18. Ryu, S., Lee, H.W., Kim, Y.M., Jae, J., Jung, S.C., Ha, J.M., Park, Y.K.: Catalytic fast co-pyrolysis of organosolv lignin and polypropylene over in-situ red mud and ex-situ HZSM-5 in two-step catalytic micro reactor. Appl. Surf. Sci. (2020). https://doi.org/10.1016/j.apsusc.2020.145521

    Article  Google Scholar 

  19. Dorado, C., Mullen, C.A., Boateng, A.A.: H-ZSM5 catalyzed co-pyrolysis of biomass and plastics. ACS Sustain. Chem. Eng. 2, 301–311 (2014). https://doi.org/10.1021/sc400354g

    Article  Google Scholar 

  20. Oudenhoven, S.R.G., Westerhof, R.J.M., Aldenkamp, N., Brilman, D.W.F., Kersten, S.R.A.: Demineralization of wood using wood-derived acid: towards a selective pyrolysis process for fuel and chemicals production. J. Anal. Appl. Pyrolysis 103, 112–118 (2013). https://doi.org/10.1016/j.jaap.2012.10.002

    Article  Google Scholar 

  21. Heilig, M.L.: United States patent office. ACM SIGGRAPH Comput. Graph. 28, 131–134 (1994). https://doi.org/10.1145/178951.178972

    Article  Google Scholar 

  22. Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938). https://doi.org/10.1021/ja01269a023

    Article  Google Scholar 

  23. Emeis, C.A.: Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. J. Catal. 141(2), 347–354 (1993)

    Article  Google Scholar 

  24. Rhee, K.H., Rao, V.U.S., Stencel, M., Melson, G.A., Crawford, J.E.: Supported transition metal compounds. Infrared studies on the acidity of Co/ZSM-5 and Fe/ZSM-5 catalysts. Zeolites 3, 337–343 (1983)

    Article  Google Scholar 

  25. Renzini, M.S., Lerici, L.C., Sedran, U., Pierella, L.B.: Stability of ZSM-11 and BETA zeolites during the catalytic cracking of low-density polyethylene. J. Anal. Appl. Pyrolysis 92, 450–455 (2011). https://doi.org/10.1016/j.jaap.2011.08.008

    Article  Google Scholar 

  26. Wang, M., Leitch, M., Charles, C.: Chemistry Synthesis of phenolic resol resins using cornstalk-derived bio-oil produced by direct liquefaction in hot-compressed phenol–water. J. Ind. Eng. 15, 870–875 (2009). https://doi.org/10.1016/j.jiec.2009.09.015

    Article  Google Scholar 

  27. Aguayo, T., Atutxa, A., Valle, B., Bilbao, J., Gayubo, A.G.: Undesired components in the transformation of biomass pyrolysis oil into hydrocarbons on an HZSM-5 zeolite catalyst. J. Chem. Technol. Biotechnol. 1251, 1244–1251 (2005). https://doi.org/10.1002/jctb.1316

    Article  Google Scholar 

  28. Zhang, B., Zhong, Z., Min, M., Ding, K., Xie, Q., Ruan, R.: Catalytic fast co-pyrolysis of biomass and food waste to produce aromatics: analytical Py-GC/MS study. Bioresour. Technol. 189, 30–35 (2015). https://doi.org/10.1016/j.biortech.2015.03.092

    Article  Google Scholar 

  29. Li, X., Zhang, H., Li, J., Su, L., Zuo, J., Komarneni, S., Wang, Y.: Improving the aromatic production in catalytic fast pyrolysis of cellulose by co-feeding low-density polyethylene. Appl. Catal. A 455, 114–121 (2013). https://doi.org/10.1016/j.apcata.2013.01.038

    Article  Google Scholar 

  30. Zhang, X., Lei, H., Chen, S., Wu, J.: Catalytic co-pyrolysis of lignocellulosic biomass with polymers: a critical review. Green Chem. 18, 4145–4169 (2016). https://doi.org/10.1039/c6gc00911e

    Article  Google Scholar 

  31. Brebu, M., Spiridon, I.: Co-pyrolysis of LignoBoost® lignin with synthetic polymers. Polym. Degrad. Stab. 97, 2104–2109 (2012). https://doi.org/10.1016/j.polymdegradstab.2012.08.024

    Article  Google Scholar 

  32. Cheng, Y.T., Wang, Z., Gilbert, C.J., Fan, W., Huber, G.W.: Production of p-xylene from biomass by catalytic fast pyrolysis using ZSM-5 catalysts with reduced pore openings. Angew. Chemie Int. Ed. 51, 11097–11100 (2012). https://doi.org/10.1002/anie.201205230

    Article  Google Scholar 

  33. Vitolo, S., Bresci, B., Seggiani, M., Gallo, M.G.: Catalytic upgrading of pyrolytic oils over HZSM-5 zeolite: behaviour of the catalyst when used in repeated upgrading-regenerating cycles. Fuel (2001). https://doi.org/10.1016/S0016-2361(00)00063-6

    Article  Google Scholar 

  34. Zhou, G., Li, J., Yu, Y., Li, X., Wang, Y., Wang, W., Komarneni, S.: Optimizing the distribution of aromatic products from catalytic fast pyrolysis of cellulose by ZSM-5 modification with boron and co-feeding of low-density polyethylene. Appl. Catal. A 487, 45–53 (2014). https://doi.org/10.1016/j.apcata.2014.09.009

    Article  Google Scholar 

  35. Li, X., Li, J., Zhou, G., Feng, Y., Wang, Y., Yu, G., Deng, S., Huang, J., Wang, B.: Enhancing the production of renewable petrochemicals by co-feeding of biomass with plastics in catalytic fast pyrolysis with ZSM-5 zeolites. Appl. Catal. A 481, 173–182 (2014). https://doi.org/10.1016/j.apcata.2014.05.015

    Article  Google Scholar 

  36. Environ, E., Carlson, T.R., Cheng, Y., Jae, J., Huber, G.W.: Production of green aromatics and olefins by catalytic fast pyrolysis of wood sawdust. Energy Environ. Sci. (2011). https://doi.org/10.1039/c0ee00341g

    Article  Google Scholar 

  37. Wang, K.R., An, H.W., Rong, R.X., Cao, Z.R., Li, X.L.: Synthesis of biocompatible glycodendrimer based on fluorescent perylene bisimides and its bioimaging. Macromol. Rapid Commun. 35, 727–734 (2014). https://doi.org/10.1002/marc.201300916

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Ministerio de Ciencia y Tecnología de Córdoba (PIOdo 2018), Universidad Tecnológica Nacional (PID-UTN PUTNCO0004796), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and ROITECH S.A. company.

Funding

Ministerio de Ciencia y Tecnología de Córdoba (PIOdo 2018), Universidad Tecnológica Nacional (PID-UTN PUTNCO0004796),

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María V. Rocha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocha, M.V., Pierella, L.B. & Renzini, M.S. Influence of Phenolic Compounds in Obtaining Aromatic Hydrocarbons During the Thermal and Catalytic Co-pyrolysis of Peanut Shells and Plastic Waste. Waste Biomass Valor 14, 159–166 (2023). https://doi.org/10.1007/s12649-022-01846-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01846-2

Keywords

Navigation