Skip to main content

Advertisement

Log in

Current Challenge and Innovative Progress for Producing HVO and FAME Biodiesel Fuels and Their Applications

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Current petroleum issues, quickly raising its costs and uncertainties regarding petroleum fuels availability endanger the renewable and sustainable challenge of the worldwide economy. Both the ecological consideration and availableness of fuels highly impact fuel directions for transport vehicles. The current paper introduces the Prospects for producing hydrotreated vegetable oil (HVO) and fatty acid methyl esters (FAME) biodiesel fuels and their applications. The potential of raw material supply for the production biodiesel in Russia was examined, including sunflower oil, soybean oil, rapeseed oil, tall oil, and used cooking oil. Additionally, an economic evaluation of biodiesel production in Russia was performed. Likewise, Russia has launched the process of developing low-carbon strategies for the energy transition, but the country is placing more emphasis on the electrification and gasification of transport. The results reported that HVO is a promising low-carbon component of biological nature than FAME, according to it has a high calorific value, and great chemical stability. Furthermore, the results indicated that the most promising feedstock for biodiesel production in Russia is rapeseed oil, as rapeseed retains a higher yield growth potential. Finally, the most preferable option is the hydroprocessing of oils in a separate unit with a capacity of 500,000 tons/year for oil. Large capacity is probably redundant given the limited resources of advanced raw materials up to 100–150,000 tons of waste oils and up to 150–200,000 tons of tall oils.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

HVO:

Hydrotreated Vegetable Oil

FAME:

Fatty Acid Methyl Esters

EU:

European Union

HEFA:

Hydroprocessed Esters and Fatty Acids

SAF:

Sustainable Aviation Fuel

RED:

Renewable Energy Directive

ILUC:

Indirect Land Use Change

CBAM:

Carbon Border Adjustment Mechanism

ETS:

Emission Trading System

UCO:

Used Cooking Oil

HOLL:

High Oleic Low Linolenic

CTO:

Crude Tall Oil

$/t:

Dollar per tones

ASTM:

American Standards for Testing and Materials

References

  1. Efimov, I., Povarov, V.G., Rudko, V.A.: Use of partition coefficients in a hexane-acetonitrile system in the GC–MS analysis of polyaromatic hydrocarbons in the example of delayed coking gas oils. ACS Omega 6, 9910–9919 (2021). https://doi.org/10.1021/acsomega.1c00691

    Article  Google Scholar 

  2. Yuan, Z., Xie, L., Sun, X., Wang, R., Li, H., Liu, J., Duan, X.: Effects of water vapor on auto-ignition characteristics and laminar flame speed of methane/air mixture under engine-relevant conditions. Fuel 315, 123169 (2022). https://doi.org/10.1016/j.fuel.2022.123169

    Article  Google Scholar 

  3. Ershov, M.A., Potanin, D.A., Tarazanov, S.V., Abdellatief, T.M.M., Kapustin, V.M.: Blending characteristics of isooctene, MTBE, and TAME as gasoline components. Energy Fuels (2020). https://doi.org/10.1021/acs.energyfuels.9b03914

    Article  Google Scholar 

  4. EL-Bassiouny, A.A., Aboul-Fotouh, T.M., Abdellatief, T.M.M.: Upgrading the commercial gasoline A80 by using ethanol and refinery products. Int. J. Sci. Eng. Res. 6, 405–417 (2015)

    Google Scholar 

  5. Savelenko, V.D., Ershov, M.A., Kapustin, V.M., Chernysheva, E.A., Abdellatief, T.M.M., Makhova, U.A., Makhmudova, A.E., Abdelkareem, M.A., Olabi, A.G.: Pathways resilient future for developing a sustainable E85 fuel and prospects towards its applications. Sci. Total Environ. 844, 157069 (2022). https://doi.org/10.1016/j.scitotenv.2022.157069

    Article  Google Scholar 

  6. Abdellatief, T.M.M., Ershov, M.A., Kapustin, V.M., Ali Abdelkareem, M., Kamil, M., Olabi, A.G.: Recent trends for introducing promising fuel components to enhance the anti-knock quality of gasoline: a systematic review. Fuel 291, 120112 (2021). https://doi.org/10.1016/j.fuel.2020.120112

    Article  Google Scholar 

  7. Guan, J., Liu, J., Duan, X., Jia, D., Li, Y., Yuan, Z., Shen, D.: Effect of the novel continuous variable compression ratio (CVCR) configuration coupled with spark assisted induced ignition (SAII) combustion mode on the performance behavior of the spark ignition engine. Appl. Therm. Eng. 197, 117410 (2021). https://doi.org/10.1016/j.applthermaleng.2021.117410

    Article  Google Scholar 

  8. Abdellatief, T.M.M., Ershov, M.A., Kapustin, V.M., Chernysheva, E.A., Savelenko, V.D., Salameh, T., Abdelkareem, M.A., Olabi, A.G.: Novel promising octane hyperboosting using isoolefinic gasoline additives and its application on fuzzy modeling. Int. J. Hydrogen Energy. 47, 4932–4942 (2022). https://doi.org/10.1016/j.ijhydene.2021.11.114

    Article  Google Scholar 

  9. Abdellatief, T.M.M., Ershov, M.A., Kapustin, V.M.: Maximizing the quality and quantity of gasoline produced from natural gas condensate 4th (ICAFEE), p. 406. Feng Chia University, Taichung, Taiwan (2019)

    Google Scholar 

  10. Abdellatief, T.M.M., Ershov, M.A., Kapustin, V.M.: Using isooctene as a novel gasoline additive in comparison with MTBE and TAME. In: 4th (ICAFEE), p. 122. Feng Chia University, Taichung, Taiwan (2019)

    Google Scholar 

  11. Ershov, M.A., Savelenko, V.D., Makhova, U.A., Kapustin, V.M., Abdellatief, T.M.M., Karpov, N.V., Dutlov, E.V., Borisanov, D.V.: Perspective towards a gasoline-property-first approach exhibiting octane hyperboosting based on isoolefinic hydrocarbons. Fuel 321, 124016 (2022). https://doi.org/10.1016/j.fuel.2022.124016

    Article  Google Scholar 

  12. Ershov, M.A., Klimov, N.A., Burov, N.O., Abdellatief, T.M.M., Kapustin, V.M.: Creation a novel promising technique for producing an unleaded aviation gasoline 100UL. Fuel 284, 118928 (2021). https://doi.org/10.1016/j.fuel.2020.118928

    Article  Google Scholar 

  13. Gabdulkhakov, R.R., Rudko, V.A., Pyagay, I.N.: Methods for modifying needle coke raw materials by introducing additives of various origin (review). Fuel 310, 122265 (2022). https://doi.org/10.1016/j.fuel.2021.122265

    Article  Google Scholar 

  14. Kameshkov, A.V., Rudko, V.A., Gabdulkhakov, R.R., Nazarenko, M.Y., Starkov, M.K., Povarov, V.G., Pyagay, I.N.: Technology of producing petroleum coking additives to replace coking coal. ACS Omega 6, 35307–35314 (2021). https://doi.org/10.1021/acsomega.1c04075

    Article  Google Scholar 

  15. EL-Bassiouny, A.A., Aboul-Fotouh, T.A., Abdellatief, T.M.M.: Maximize the production of environmental, clean and high octane number gasoline-ethanol blends by using refinery products. Int. J. Sci. Eng. Res. 6, 1792–1803 (2015)

    Google Scholar 

  16. Ershov, M.A., Savelenko, V.D., Makhova, U.A., Kapustin, V.M., Potanin, D.A., Habibullin, I.F., Lazarev, V.E., Abdellatief, T.M.M., Abdelkareem, M.A., Olabi, A.G.: New insights on introducing modern multifunctional additives into motor gasoline. Sci. Total Environ. 808, 152034 (2022). https://doi.org/10.1016/j.scitotenv.2021.152034

    Article  Google Scholar 

  17. Tang, Q., Jiang, P., Peng, C., Duan, X., Zhao, Z.: Impact of acetone–butanol–ethanol (ABE) and gasoline blends on the energy balance of a high-speed spark-ignition engine. Appl. Therm. Eng. 184, 116267 (2021). https://doi.org/10.1016/j.applthermaleng.2020.116267

    Article  Google Scholar 

  18. Abdellatief, T.M.M., El-Bassiouny, A.A., Aboul-Fotouh, T.M.: An Environmental Gasoline. LAP LAMBERT Acad. Pub. 11, 1–121 (2015)

    Google Scholar 

  19. Abdellatief, T.M.M., Ershov, M.A., Kapustin, V.M.: Investigation the physicochemical characteristics of isooctene in comparison with MTBE and TAME. In: 11th International Youth Scientific and Practical Congress Oil and Gas Horizons. Moscow (2019).

  20. Ershov, M.A., Savelenko, V.D., Shvedova, N.S., Kapustin, V.M., Abdellatief, T.M.M., Karpov, N.V., Dutlov, E.V., Borisanov, D.V.: An evolving research agenda of merit function calculations for new gasoline compositions. Fuel 322, 124209 (2022). https://doi.org/10.1016/j.fuel.2022.124209

    Article  Google Scholar 

  21. Ershov, M.A., Grigorieva, E.V., Abdellatief, T.M.M.: Hybrid Low-carbon high-octane oxygenated environmental gasoline based on Low-octane hydrocarbon Fractions. Sci. Total Environ. (2021). https://doi.org/10.1016/j.scitotenv.2020.142715

    Article  Google Scholar 

  22. Sun, X., Liu, H., Duan, X., Guo, H., Li, Y., Qiao, J., Liu, Q., Liu, J.: Effect of hydrogen enrichment on the flame propagation, emissions formation and energy balance of the natural gas spark ignition engine. Fuel 307, 121843 (2022). https://doi.org/10.1016/j.fuel.2021.121843

    Article  Google Scholar 

  23. Ershov, M., Abdellatief, T., Potanin, D., Klimov, N., Chernysheva, E., Kapustin, V.: Characteristics of Isohexene as a Novel Promising High-Octane Gasoline Booster. Energy Fuels. 34, 8139–8149 (2020). https://doi.org/10.1021/acs.energyfuels.0c00945

    Article  Google Scholar 

  24. Abdellatief, T.M.M.: Enhancing the properties of Egyption gasoline through modified operations, Master Thesis. Minia University, Egypt (2015)

    Google Scholar 

  25. Karishma, S.M., Rajak, U., Naik, B.K., Dasore, A., Konijeti, R.: Performance and emission characteristics assessment of compression ignition engine fuelled with the blends of novel antioxidant catechol-daok biodiesel. Energy 245, 123304 (2022). https://doi.org/10.1016/j.energy.2022.123304

    Article  Google Scholar 

  26. Oni, B.A., Sanni, S.E., Ezurike, B.O., Okoro, E.E.: Effect of corrosion rates of preheated Schinzochytrium sp. microalgae biodiesel on metallic components of a diesel engine. Alexandria Eng. J. (2022). https://doi.org/10.1016/j.aej.2022.01.005

    Article  Google Scholar 

  27. Qiu, J., Fan, X., Zou, H.: Erratum To the article “Development of Biodiesel from Inedible Feedstock Through Various Production Processes Review” by Junli Qiul, Xiaohu Fan, and Hongyu Zou, Vol. 47, No. 2, pp. 102–111, May, 2011. Chem. Technol. Fuels Oils. 47, 245 (2011). https://doi.org/10.1007/s10553-011-0290-3

    Article  Google Scholar 

  28. Tsanaktsidis, C.G.: Using a biodegradable polymer to reduce the acidity of biodiesel and biodiesel/petroleum diesel fuel blends. Chem. Technol. Fuels Oils. 48, 44–48 (2012). https://doi.org/10.1007/s10553-012-0335-2

    Article  Google Scholar 

  29. Szabados, G., Bereczky, Á.: Experimental investigation of physicochemical properties of diesel, biodiesel and TBK-biodiesel fuels and combustion and emission analysis in CI internal combustion engine. Renew. Energy. 121, 568–578 (2018). https://doi.org/10.1016/j.renene.2018.01.048

    Article  Google Scholar 

  30. Wei, X.-F., Meng, Q., Kallio, K.J., Olsson, R.T., Hedenqvist, M.S.: Ageing properties of a polyoxymethylene copolymer exposed to (bio) diesel and hydrogenated vegetable oil (HVO) in demanding high temperature conditions. Polym. Degrad. Stab. 185, 109491 (2021). https://doi.org/10.1016/j.polymdegradstab.2021.109491

    Article  Google Scholar 

  31. Dobrzyńska, E., Szewczyńska, M., Pośniak, M., Szczotka, A., Puchałka, B., Woodburn, J.: Exhaust emissions from diesel engines fueled by different blends with the addition of nanomodifiers and hydrotreated vegetable oil HVO. Environ. Pollut. 259, 113772 (2020). https://doi.org/10.1016/j.envpol.2019.113772

    Article  Google Scholar 

  32. Vargas, E.M., Neves, M.C., Tarelho, L.A.C., Nunes, M.I.: Solid catalysts obtained from wastes for FAME production using mixtures of refined palm oil and waste cooking oils. Renew. Energy. 136, 873–883 (2019). https://doi.org/10.1016/j.renene.2019.01.048

    Article  Google Scholar 

  33. Vargas, E.M., Ospina, L., Neves, M.C., Tarelho, L.A.C., Nunes, M.I.: Optimization of FAME production from blends of waste cooking oil and refined palm oil using biomass fly ash as a catalyst. Renew. Energy. 163, 1637–1647 (2021). https://doi.org/10.1016/j.renene.2020.10.030

    Article  Google Scholar 

  34. Wang, W., Liu, H., Li, F., Wang, H., Ma, X., Li, J., Zhou, L., Xiao, Q.: Effects of unsaturated fatty acid methyl esters on the oxidation stability of biodiesel determined by gas chromatography-mass spectrometry and information entropy methods. Renew. Energy. 175, 880–886 (2021). https://doi.org/10.1016/j.renene.2021.04.132

    Article  Google Scholar 

  35. Quaranta, E., Cornacchia, D.: Partial hydrogenation of a C18:3-rich FAME mixture over Pd/C. Renew. Energy. 157, 33–42 (2020). https://doi.org/10.1016/j.renene.2020.04.122

    Article  Google Scholar 

  36. Leesing, R., Siwina, S., Ngernyen, Y., Fiala, K.: Innovative approach for co-production of single cell oil (SCO), novel carbon-based solid acid catalyst and SCO-based biodiesel from fallen Dipterocarpus alatus leaves. Renew. Energy. 185, 47–60 (2022). https://doi.org/10.1016/j.renene.2021.11.120

    Article  Google Scholar 

  37. Zailan, Z., Tahir, M., Jusoh, M., Zakaria, Z.Y.: A review of sulfonic group bearing porous carbon catalyst for biodiesel production. Renew. Energy. 175, 430–452 (2021). https://doi.org/10.1016/j.renene.2021.05.030

    Article  Google Scholar 

  38. Sun, C., Hu, Y., Sun, F., Sun, Y., Song, G., Chang, H., Lunprom, S.: Comparison of biodiesel production using a novel porous Zn/Al/Co complex oxide prepared from different methods: physicochemical properties, reaction kinetic and thermodynamic studies. Renew. Energy. 181, 1419–1430 (2022). https://doi.org/10.1016/j.renene.2021.09.122

    Article  Google Scholar 

  39. Florido, P.M., Visioli, P.C.F., Pinto, C.N., Gonçalves, C.B.: Study of FAME model systems: Database and evaluation of predicting models for biodiesel physical properties. Renew. Energy. 151, 837–845 (2020). https://doi.org/10.1016/j.renene.2019.11.083

    Article  Google Scholar 

  40. Wang, H., Peng, X., Zhang, H., Yang, S., Li, H.: Microorganisms-promoted biodiesel production from biomass: a review. Energy Convers. Manag. X. 12, 100137 (2021). https://doi.org/10.1016/j.ecmx.2021.100137

    Article  Google Scholar 

  41. Bashir, M.A., Wu, S., Zhu, J., Krosuri, A., Khan, M.U., Ndeddy Aka, R.J.: Recent development of advanced processing technologies for biodiesel production: A critical review. Fuel Process. Technol. 227, 107120 (2022). https://doi.org/10.1016/j.fuproc.2021.107120

    Article  Google Scholar 

  42. Dieter, B.: European and global view ☆. OCL J. 26, (2019)

  43. Parliament, E.: Directive (EU) 2018/2001 of the European Parliament and of the council on the promotion of the use of energy from renewable sources. Off. J. Eur. Union. 2018, 82–209 (2018)

    Google Scholar 

  44. Abdellatief, T.M.M., Ershov, M.A., Kapustin, V.M.: New recipes for producing a high-octane gasoline based on naphtha from natural gas condensate. Fuel 276, 118075 (2020). https://doi.org/10.1016/j.fuel.2020.118075

    Article  Google Scholar 

  45. Ershov, M.A., Potanin, D.A., Grigorieva, E.V., Abdellatief, T.M.M., Kapustin, V.M.: Discovery a high-octane environmental gasoline based on gasoline Fischer-Tropsch process. Energy Fuels. (2020). https://doi.org/10.1021/acs.energyfuels.0c00009

    Article  Google Scholar 

  46. Chiaramonti, D., Goumas, T.: Impacts on industrial-scale market deployment of advanced biofuels and recycled carbon fuels from the EU Renewable Energy Directive II. Appl. Energy. 251, 113351 (2019). https://doi.org/10.1016/j.apenergy.2019.113351

    Article  Google Scholar 

  47. Ershov, M., Potanin, D., Gueseva, A., Abdellatief, T.M.M., Kapustin, V.: Novel strategy to develop the technology of high-octane alternative fuel based on low-octane gasoline Fischer-Tropsch process. Fuel (2020). https://doi.org/10.1016/j.fuel.2019.116330

    Article  Google Scholar 

  48. Ershov, M.A., Grigorieva, E.V., Abdellatief, T.M.M., Chernysheva, E.A., Makhin, D.Y., Kapustin, V.M.: A new approach for producing mid-ethanol fuels E30 based on low-octane hydrocarbon surrogate blends. Fuel Process. Technol. 213, 106688 (2021). https://doi.org/10.1016/j.fuproc.2020.106688

    Article  Google Scholar 

  49. Abdellatief, T.M.M., Ershov, M.A., Kapustin, V.M., Chernysheva, E.A., Savelenko, V.D., Salameh, T., Abdelkareem, M.A., Olabi, A.G.: Uniqueness technique for introducing high octane environmental gasoline using renewable oxygenates and its formulation on Fuzzy modeling. Sci. Total Environ. 802, 149863 (2022). https://doi.org/10.1016/j.scitotenv.2021.149863

    Article  Google Scholar 

  50. Braungardt, S., Bürger, V., Zieger, J., Bosselaar, L.: How to include cooling in the EU renewable energy directive? Strategies and policy implications. Energy Policy 129, 260–267 (2019). https://doi.org/10.1016/j.enpol.2019.02.027

    Article  Google Scholar 

  51. Mai-Moulin, T., Hoefnagels, R., Grundmann, P., Junginger, M.: Effective sustainability criteria for bioenergy: towards the implementation of the European renewable directive II. Renew. Sustain. Energy Rev. 138, 110645 (2021). https://doi.org/10.1016/j.rser.2020.110645

    Article  Google Scholar 

  52. Maia, R.G.T., Bozelli, H.: The importance of GHG emissions from land use change for biofuels in Brazil: an assessment for current and 2030 scenarios. Resour. Conserv. Recycl. 179, 106131 (2022). https://doi.org/10.1016/j.resconrec.2021.106131

    Article  Google Scholar 

  53. Puricelli, S., Cardellini, G., Casadei, S., Faedo, D., van den Oever, A.E.M., Grosso, M.: A review on biofuels for light-duty vehicles in Europe. Renew. Sustain. Energy Rev. 137, 110398 (2021). https://doi.org/10.1016/j.rser.2020.110398

    Article  Google Scholar 

  54. Türck, J., Singer, A., Lichtinger, A., Almaddad, M., Türck, R., Jakob, M., Garbe, T., Ruck, W., Krahl, J.: Solketal as a renewable fuel component in ternary blends with biodiesel and diesel fuel or HVO and the impact on physical and chemical properties. Fuel 310, 122463 (2022). https://doi.org/10.1016/j.fuel.2021.122463

    Article  Google Scholar 

  55. Preuß, J., Munch, K., Denbratt, I.: Performance and emissions of renewable blends with OME3–5 and HVO in heavy duty and light duty compression ignition engines. Fuel 303, 121275 (2021). https://doi.org/10.1016/j.fuel.2021.121275

    Article  Google Scholar 

  56. Alekseev, A.N., Bogoviz, A.V., Goncharenko, L.P., Sybachin, S.A.: A critical review of Russia’s energy strategy in the period until 2035. Int. J. Energy Econ. Policy. 9, 95–102 (2019). https://doi.org/10.32479/ijeep.8263

    Article  Google Scholar 

  57. Khan, M.M., Sharma, R.P., Kadian, A.K., Hasnain, S.M.M.: An assessment of alcohol inclusion in various combinations of biodiesel-diesel on the performance and exhaust emission of modern-day compression ignition engines – a review. Mater. Sci. Energy Technol. 5, 81–98 (2022). https://doi.org/10.1016/j.mset.2021.12.004

    Article  Google Scholar 

  58. Fangfang, F., Alagumalai, A., Mahian, O.: Sustainable biodiesel production from waste cooking oil: ANN modeling and environmental factor assessment. Sustain. Energy Technol. Assess. 46, 101265 (2021). https://doi.org/10.1016/j.seta.2021.101265

    Article  Google Scholar 

  59. Khan, H.M., Iqbal, T., Yasin, S., Irfan, M., Kazmi, M., Fayaz, H., Mujtaba, M.A., Ali, C.H., Kalam, M.A., Soudagar, M.E.M., Ullah, N.: Production and utilization aspects of waste cooking oil based biodiesel in Pakistan. Alexandria Eng. J. 60, 5831–5849 (2021). https://doi.org/10.1016/j.aej.2021.04.043

    Article  Google Scholar 

  60. Panoutsou, C., Germer, S., Karka, P., Papadokostantakis, S., Kroyan, Y., Wojcieszyk, M., Maniatis, K., Marchand, P., Landalv, I.: Advanced biofuels to decarbonise European transport by 2030: Markets, challenges, and policies that impact their successful market uptake. Energy Strateg. Rev. 34, 100633 (2021). https://doi.org/10.1016/j.esr.2021.100633

    Article  Google Scholar 

  61. Sosa-Rodríguez, F.S., Vazquez-Arenas, J.: The biodiesel market in Mexico: challenges and perspectives to overcome in Latin-American countries. Energy Convers. Manag. X. 12, 100149 (2021). https://doi.org/10.1016/j.ecmx.2021.100149

    Article  Google Scholar 

  62. Hossain, M., Israt, S.S., Muntaha, N., Jamal, M.S.: Effect of antioxidants and blending with diesel on partially hydrogenated fish oil biodiesel to upgrade the oxidative stability. Bioresour. Technol. Reports. 17, 100938 (2022). https://doi.org/10.1016/j.biteb.2021.100938

    Article  Google Scholar 

  63. Tongroon, M., Suebwong, A., Kananont, M., Aunchaisri, J., Chollacoop, N.: High quality Jatropha biodiesel (H-FAME) and its application in a common rail diesel engine. Renew. Energy. 113, 660–668 (2017). https://doi.org/10.1016/j.renene.2017.06.006

    Article  Google Scholar 

  64. Oliva, F., Fernández-Rodríguez, D.: Autoignition study of LPG blends with diesel and HVO in a constant-volume combustion chamber. Fuel 267, 117173 (2020). https://doi.org/10.1016/j.fuel.2020.117173

    Article  Google Scholar 

  65. Sharma, P., Usman, M., Salama, E.-S., Redina, M., Thakur, N., Li, X.: Evaluation of various waste cooking oils for biodiesel production: a comprehensive analysis of feedstock. Waste Manag. 136, 219–229 (2021). https://doi.org/10.1016/j.wasman.2021.10.022

    Article  Google Scholar 

  66. Gamal, T.S.F., Chiadighikaobi, P.C.: Comparative analysis of reliability of non-destructive methods of strength control of concrete impregnated with vegetable oil: basalt fiber for increasing the concrete strength. Mater. Today Proc. 19, 2479–2482 (2019). https://doi.org/10.1016/j.matpr.2019.08.113

    Article  Google Scholar 

  67. Spring, O.: Sesquiterpene lactones in sunflower oil. LWT. 142, 111047 (2021). https://doi.org/10.1016/j.lwt.2021.111047

    Article  Google Scholar 

  68. Li, B., Dou, X., Yu, K., Zhang, W., Xu, H., Sun, Z., Wang, Z., Wang, J.: Electrocoalescence of water droplet trains in sunflower oil under the coupling of non-uniform electric and Laminar flow fields. Chem. Eng. Sci. 248, 117158 (2022). https://doi.org/10.1016/j.ces.2021.117158

    Article  Google Scholar 

  69. Wongsawa, T., Ampronpong, W., Traiwongsa, N., Pancharoen, U., Punyain, W., Phatanasri, S.: New and green extraction of mercury(I) by pure sunflower oil: Mechanism, kinetics and thermodynamics. J. Taiwan Inst. Chem. Eng. 122, 40–50 (2021). https://doi.org/10.1016/j.jtice.2021.04.056

    Article  Google Scholar 

  70. Xu, X., Zhang, Y.: Soybean and soybean oil price forecasting through the nonlinear autoregressive neural network (NARNN) and NARNN with exogenous inputs (NARNN–X). Intell. Syst. with Appl. (2022). https://doi.org/10.1016/j.iswa.2022.200061

    Article  Google Scholar 

  71. Pereira, S.N.G., De Lima, A.B.S., Oliveira, T.D.F., Batista, A.S., De Jesus, J.C., Ferrão, S.P.B., Santos, L.S.: Non-destructive detection of soybean oil addition in babassu oil by MIR spectroscopy and chemometrics. LWT. 154, 112857 (2022). https://doi.org/10.1016/j.lwt.2021.112857

    Article  Google Scholar 

  72. Rial, R.C., de Freitas, O.N., Nazário, C.E.D., Viana, L.H.: Biodiesel from soybean oil using Porcine pancreas lipase immobilized on a new support: p-nitrobenzyl cellulose xanthate. Renew. Energy. 149, 970–979 (2020). https://doi.org/10.1016/j.renene.2019.10.078

    Article  Google Scholar 

  73. Zaaboul, F., Zhao, Q., Xu, Y., Liu, Y.: Soybean oil bodies: a review on composition, properties, food applications, and future research aspects. Food Hydrocoll. 124, 107296 (2022). https://doi.org/10.1016/j.foodhyd.2021.107296

    Article  Google Scholar 

  74. Vieira, B., Nadaleti, W.C., Sarto, E.: The effect of the addition of castor oil to residual soybean oil to obtain biodiesel in Brazil: energy matrix diversification. Renew. Energy. 165, 657–667 (2021). https://doi.org/10.1016/j.renene.2020.10.056

    Article  Google Scholar 

  75. Ameen, N.H.A., Durak, E.: Study of the tribological properties the mixture of soybean oil and used (waste) frying oil fatty acid methyl ester under boundary lubrication conditions. Renew. Energy. 145, 1730–1747 (2020). https://doi.org/10.1016/j.renene.2019.06.117

    Article  Google Scholar 

  76. Zhu, J., Li, X., Liu, L., Li, Y., Qi, B., Jiang, L.: Preparation of spray-dried soybean oil body microcapsules using maltodextrin: effects of dextrose equivalence. LWT. 154, 112874 (2022). https://doi.org/10.1016/j.lwt.2021.112874

    Article  Google Scholar 

  77. Essamlali, Y., Amadine, O., Fihri, A., Zahouily, M.: Sodium modified fluorapatite as a sustainable solid bi-functional catalyst for biodiesel production from rapeseed oil. Renew. Energy. 133, 1295–1307 (2019). https://doi.org/10.1016/j.renene.2018.08.103

    Article  Google Scholar 

  78. Özer, S.: The effect of diesel fuel-tall oil/ethanol/methanol/isopropyl/n-butanol/fusel oil mixtures on engine performance and exhaust emissions. Fuel 281, 118671 (2020). https://doi.org/10.1016/j.fuel.2020.118671

    Article  Google Scholar 

  79. Ji, C., Zhai, Y., Zhang, T., Shen, X., Bai, Y., Hong, J.: Carbon, energy and water footprints analysis of rapeseed oil production: a case study in China. J. Environ. Manage. 287, 112359 (2021). https://doi.org/10.1016/j.jenvman.2021.112359

    Article  Google Scholar 

  80. Keskin, A., Yaşar, A., Gürü, M., Altıparmak, D.: Usage of methyl ester of tall oil fatty acids and resinic acids as alternative diesel fuel. Energy Convers. Manag. 51, 2863–2868 (2010). https://doi.org/10.1016/j.enconman.2010.06.025

    Article  Google Scholar 

  81. Almasi, S., Ghobadian, B., Najafi, G., Dehghani Soufi, M.: A novel approach for bio-lubricant production from rapeseed oil-based biodiesel using ultrasound irradiation: multi-objective optimization. Sustain. Energy Technol. Assessments. 43, 100960 (2021). https://doi.org/10.1016/j.seta.2020.100960

    Article  Google Scholar 

  82. Gilardelli, C., Stella, T., Frasso, N., Cappelli, G., Bregaglio, S., Chiodini, M.E., Scaglia, B., Confalonieri, R.: WOFOST-GTC: a new model for the simulation of winter rapeseed production and oil quality. F. Crop. Res. 197, 125–132 (2016). https://doi.org/10.1016/j.fcr.2016.07.013

    Article  Google Scholar 

  83. Shin, H.-Y., Lim, S.-M., Kang, S.C., Bae, S.-Y.: Statistical optimization for biodiesel production from rapeseed oil via transesterificaion in supercritical methanol. Fuel Process. Technol. 98, 1–5 (2012). https://doi.org/10.1016/j.fuproc.2012.01.025

    Article  Google Scholar 

  84. Aryan, V., Kraft, A.: The crude tall oil value chain: global availability and the influence of regional energy policies. J. Clean. Prod. 280, 124616 (2021). https://doi.org/10.1016/j.jclepro.2020.124616

    Article  Google Scholar 

  85. Chen, G., Liu, G., Yan, B., Shan, R., Wang, J., Li, T., Xu, W.: Experimental study of co-digestion of food waste and tall fescue for bio-gas production. Renew. Energy. 88, 273–279 (2016). https://doi.org/10.1016/j.renene.2015.11.035

    Article  Google Scholar 

  86. Adewale, P., Vithanage, L.N., Christopher, L.: Optimization of enzyme-catalyzed biodiesel production from crude tall oil using Taguchi method. Energy Convers. Manag. 154, 81–91 (2017). https://doi.org/10.1016/j.enconman.2017.10.045

    Article  Google Scholar 

  87. Jianfei, Y., Zixing, F., Liangmeng, N., Qi, G., Zhijia, L.: Combustion characteristics of bamboo lignin from kraft pulping: influence of washing process. Renew. Energy. 162, 525–534 (2020). https://doi.org/10.1016/j.renene.2020.08.076

    Article  Google Scholar 

  88. Albuquerque, A.A., Ng, F.T.T., Danielski, L., Stragevitch, L.: A new process for biodiesel production from tall oil via catalytic distillation. Chem. Eng. Res. Des. 170, 314–328 (2021). https://doi.org/10.1016/j.cherd.2021.04.014

    Article  Google Scholar 

  89. Soam, S., Hillman, K.: Factors influencing the environmental sustainability and growth of hydrotreated vegetable oil (HVO) in Sweden. Bioresour. Technol. Reports. 7, 100244 (2019). https://doi.org/10.1016/j.biteb.2019.100244

    Article  Google Scholar 

  90. Suarez-Bertoa, R., Kousoulidou, M., Clairotte, M., Giechaskiel, B., Nuottimäki, J., Sarjovaara, T., Lonza, L.: Impact of HVO blends on modern diesel passenger cars emissions during real world operation. Fuel 235, 1427–1435 (2019). https://doi.org/10.1016/j.fuel.2018.08.031

    Article  Google Scholar 

  91. Barbieri, D.M., Lou, B., Dyke, R.J., Chen, H., Wang, F., Connor, B., Hoff, I.: Mechanical properties of roads unbound treated with synthetic fluid based on isoalkane and tall oil. Transp. Geotech. 32, 100701 (2022). https://doi.org/10.1016/j.trgeo.2021.100701

    Article  Google Scholar 

  92. Nogueira, J.M.F., Castanho, M.A.R.B.: Crude tall-oil sodium salts micellization in aqueous solutions studied by static and dynamic light scattering. Colloids Surfaces A Physicochem. Eng. Asp. 191, 263–268 (2001). https://doi.org/10.1016/S0927-7757(01)00692-6

    Article  Google Scholar 

  93. Gómez-Trejo-López, E., González-Díaz, M.O., Aguilar-Vega, M.: Waste cooking oil transesterification by sulfonated polyphenylsulfone catalytic membrane: characterization and biodiesel production yield. Renew. Energy. 182, 1219–1227 (2022). https://doi.org/10.1016/j.renene.2021.11.003

    Article  Google Scholar 

  94. Grosmann, M.T., Andrade, T.A., di Bitonto, L., Pastore, C., Corazza, M.L., Tronci, S., Errico, M.: Hydrated metal salt pretreatment and alkali catalyzed reactive distillation: a two-step production of waste cooking oil biodiesel. Chem. Eng. Process. – Process Intensif. 176, 108980 (2022). https://doi.org/10.1016/j.cep.2022.108980

    Article  Google Scholar 

  95. de Albuquerque Landi, F.F., Fabiani, C., Castellani, B., Cotana, F., Pisello, A.L.: Environmental assessment of four waste cooking oil valorization pathways. Waste Manag. 138, 219–233 (2022). https://doi.org/10.1016/j.wasman.2021.11.037

    Article  Google Scholar 

  96. Rezania, S., Korrani, Z.S., Gabris, M.A., Cho, J., Yadav, K.K., Cabral-Pinto, M.M.S., Alam, J., Ahamed, M., Nodeh, H.R.: Lanthanum phosphate foam as novel heterogeneous nanocatalyst for biodiesel production from waste cooking oil. Renew. Energy. 176, 228–236 (2021). https://doi.org/10.1016/j.renene.2021.05.060

    Article  Google Scholar 

  97. Yadav, A.: Biofuel from waste cooking oil of hospitality laboratory. Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2021.12.048

    Article  Google Scholar 

  98. Milano, J., Shamsuddin, A.H., Silitonga, A.S., Sebayang, A.H., Siregar, M.A., Masjuki, H.H., Pulungan, M.A., Chia, S.R., Zamri, M.F.M.A.: Tribological study on the biodiesel produced from waste cooking oil, waste cooking oil blend with Calophyllum inophyllum and its diesel blends on lubricant oil. Energy Rep. 8, 1578–1590 (2022). https://doi.org/10.1016/j.egyr.2021.12.059

    Article  Google Scholar 

  99. Gad, M.S., Abdel Aziz, M.M., Kayed, H.: Impact of different nano additives on performance, combustion, emissions and exergetic analysis of a diesel engine using waste cooking oil biodiesel. Propuls. Power Res. (2022). https://doi.org/10.1016/j.jppr.2022.04.004

    Article  Google Scholar 

  100. Sulaiman, N.F., Hashim, A.N.N., Toemen, S., Rosid, S.J.M., Mokhtar, W.N.A.W., Nadarajan, R., Bakar, W.A.W.A.: Biodiesel production from refined used cooking oil using co-metal oxide catalyzed transesterification. Renew. Energy. 153, 1–11 (2020). https://doi.org/10.1016/j.renene.2020.01.158

    Article  Google Scholar 

  101. Yusuff, A.S., Bhonsle, A.K., Trivedi, J., Bangwal, D.P., Singh, L.P., Atray, N.: Synthesis and characterization of coal fly ash supported zinc oxide catalyst for biodiesel production using used cooking oil as feed. Renew. Energy. 170, 302–314 (2021). https://doi.org/10.1016/j.renene.2021.01.101

    Article  Google Scholar 

  102. Amenaghawon, A.N., Obahiagbon, K., Isesele, V., Usman, F.: Optimized biodiesel production from waste cooking oil using a functionalized bio-based heterogeneous catalyst. Clean. Eng. Technol. 8, 100501 (2022). https://doi.org/10.1016/j.clet.2022.100501

    Article  Google Scholar 

  103. Wang, S.-L., Zhu, R.-Y., Zhang, X.-L., Shen, W.-X., Zhang, H., Fang, X.-W., Yang, S.-P.: Rapid screening of low-quality cooking oil by extractive electrospray ionization mass spectrometry. Chinese J. Anal. Chem. 49, 43–48 (2021). https://doi.org/10.1016/j.cjac.2021.09.003

    Article  Google Scholar 

  104. Yahya, S., Muhamad Wahab, S.K., Harun, F.W.: Optimization of biodiesel production from waste cooking oil using Fe-Montmorillonite K10 by response surface methodology. Renew. Energy. 157, 164–172 (2020). https://doi.org/10.1016/j.renene.2020.04.149

    Article  Google Scholar 

  105. Hafriz, R.S.R.M., Shafizah, I.N., Arifin, N.A., Salmiaton, A., Yunus, R., Yap, Y.H.T., Shamsuddin, A.H.: Effect of Ni/Malaysian dolomite catalyst synthesis technique on deoxygenation reaction activity of waste cooking oil. Renew. Energy. 178, 128–143 (2021). https://doi.org/10.1016/j.renene.2021.06.074

    Article  Google Scholar 

  106. Fuel prices – petrol prices & diesel price. https://www.circlek.se/drivmedel/drivmedelspriser. Access on 25 January 2022.

  107. GNERGIA. https://www.energiafed.be/nl/maximumprijzen. Access on 25 January 2022.

  108. Fraunhofer-Gesellschaft. https://publica.fraunhofer.de/dokumente/N-507112.html. Access on 25 January 2022.

Download references

Funding

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamer M. M. Abdellatief.

Ethics declarations

Conflict of Interest

The authors declared that there is no conflict of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ershov, M.A., Savelenko, V.D., Makhova, U.A. et al. Current Challenge and Innovative Progress for Producing HVO and FAME Biodiesel Fuels and Their Applications. Waste Biomass Valor 14, 505–521 (2023). https://doi.org/10.1007/s12649-022-01880-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01880-0

Keywords

Navigation