Skip to main content
Log in

Spatiotemporal superresolution measurement based on POD and sparse regression applied to a supersonic jet measured by PIV and near-field microphone

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

The present study proposed the framework of the spatiotemporal superresolution measurement based on the sparse regression with dimensionality reduction using the proper orthogonal decomposition (POD). The non-time-resolved particle image velocimetry (PIV) and the time-resolved near-field acoustic measurements using microphones were simultaneously performed for a Mach 1.35 supersonic jet. POD is applied to PIV and microphone data matrices, and the sparse linear regression model of the reduced-order data is calculated using the least absolute shrinkage and selection operator regression. The effects of the hyperparameters of the superresolution measurement were quantitatively evaluated through randomized cross-validation. The superresolved velocity field indicated the smooth convection of the velocity fluctuations associated with the screech tone, while the convection of the large-scale structures at the downstream side was not observed. The proposed framework can reconstruct the unsteady fluctuation with multiple frequency phenomena, although the reconstruction is limited to the phenomena that are associated with the microphone output.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

D :

Nozzle exit diameter

E :

Reconstruction error

f :

Frequency

\(f_s\) :

Peak frequency of screech tone

\(L_{sh}\) :

Shock cell length

m :

Number of data points in space

M :

Mach number

n :

Number of data points in time

\(n_{td}\) :

Number of data points for time-delay

N :

Total number of PIV snapshots

\(p_{j}\) :

Microphone data acquired by jth microphone

PR:

Projection ratio

r :

Number of POD modes for the dimensionality reduction

St:

Strouhal number

\(t_{i}\) :

Discrete-time

uv :

Streamwise and radial velocity

\(u_c\) :

Convection velocity

\(U_{j}\) :

Streamwise velocity at the nozzle exit derived under the assumption of the isentropic flow

\(\kappa\) :

Sampling-rate ratio of the acoustic and PIV measurements

\(\lambda\) :

Regularization parameter for group-LASSO regression

\({\mathbf {M}}\) :

Time-delay embedded microphone data matrix

\({\mathbf {S}}\) :

Diagonal matrix of singular values

\({\mathbf {u}}\) :

Column vector of streamwise velocity components

\({\mathbf {U}}\) :

Orthogonal spatial modes matrix

\({\mathbf {v}}\) :

Column vector of radial velocity components

\({\mathbf {V}}\) :

Orthogonal temporal modes matrix

\({\mathbf {X}}\) :

Data matrix

\({\mathbf {Z}}\) :

POD coefficients matrix

\(\mathbf {Z_{{\Phi }}}\) :

Projection of the \(\mathbf {Z_{\mathrm {PIV}}}\) Onto the \({\Phi }\) Space

\({\Psi }\) :

Regression coefficients matrix

\({\Phi }\) :

Regression coefficients matrix consists of the nonzero components of \({\Psi }\)

\(\bar{}\) :

Time-averaged component

\(\widetilde{}\) :

Fluctuation component

\(\hat{}\) :

Estimated component

\('\) :

Downsampled component

\(\mathrm{MIC}\) :

Microphone data

\(\mathrm{PIV}\) :

PIV data

References

  • André B, Castelain T, Bailly C (2011) Experimental study of flight effects on screech in underexpanded jets. Phys Fluids 23(12):126102

  • André B, Castelain T, Bailly C (2013) Broadband shock-associated noise in screeching and non-screeching underexpanded supersonic jets. AIAA J 51(3):665–673

    Article  Google Scholar 

  • Arroyo CP, Daviller G, Puigt G, Airiau C, Moreau S (2019) Identification of temporal and spatial signatures of broadband shock-associated noise. Shock Waves 29(1):117–134

    Article  Google Scholar 

  • Bailly C, Fujii K (2016) High-speed jet noise. Mech Eng Rev 3(1):15–00496

  • Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imag Sci 2(1):183–202

    Article  MathSciNet  Google Scholar 

  • Beresh S, Kearney S, Wagner J, Guildenbecher D, Henfling J, Spillers R, Pruett B, Jiang N, Slipchenko M, Mance J, et al. (2015) Pulse-burst piv in a high-speed wind tunnel. Measure Sci Technol 26(9):095305

  • Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Annual Rev Fluid Mech 25(1):539–575. https://doi.org/10.1146/annurev.fl.25.010193.002543

    Article  MathSciNet  Google Scholar 

  • Brunton SL, Kutz JN (2019) Data-driven science and engineering: Machine learning, dynamical systems, and control. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Durgesh V, Naughton J (2010) Multi-time-delay lse-pod complementary approach applied to unsteady high-reynolds-number near wake flow. Exp Fluids 49(3):571–583

    Article  Google Scholar 

  • Edgington-Mitchell D, Oberleithner K, Honnery DR, Soria J (2014) Coherent structure and sound production in the helical mode of a screeching axisymmetric jet. J Fluid Mech 748:822–847

    Article  Google Scholar 

  • Edgington-Mitchell D, Jaunet V, Jordan P, Towne A, Soria J, Honnery D (2018) Upstream-travelling acoustic jet modes as a closure mechanism for screech. J Fluid Mech, p 855

  • Gao J, Li X (2010) A multi-mode screech frequency prediction formula for circular supersonic jets. J Acoust Soc Am 127(3):1251–1257

    Article  Google Scholar 

  • Gojon R, Bogey C (2017) Numerical study of the flow and the near acoustic fields of an underexpanded round free jet generating two screech tones. Int J Aeroacoust 16(7–8):603–625

    Article  Google Scholar 

  • Kähler C, Sammler B, Kompenhans J (2002) Generation and control of tracer particles for optical flow investigations in air. Exp Fluids 33(6):736–742

    Article  Google Scholar 

  • Kanda N, Nakai K, Saito Y, Nonomura T, Asai K (to appear) Feasibility study on real-time observation of flow velocity field by sparse processing particle image velocimetry. Trans Japan Soc Aeronaut Space Sci

  • Lee C, Ozawa Y, Haga T, Nonomura T, Asai K (2021) Comparison of three-dimensional density distribution of numerical and experimental analysis for twin jets. J Vis 24(6):1173–1188

    Article  Google Scholar 

  • Li S, Ukeiley L (2021) Pressure-informed velocity estimation in a subsonic jet. arXiv preprint arXiv:210607110

  • Li X, Gao J (2008) Numerical simulation of the three-dimensional screech phenomenon from a circular jet. Phys Fluids 20(3):035101

  • Li X, Liu N, Hao P, Zhang X, He F (2021) Screech feedback loop and mode staging process of axisymmetric underexpanded jets. Exp Thermal Fluid Sci 122(110):323

    Google Scholar 

  • Li XR, Zhang XW, Hao PF, He F (2020) Acoustic feedback loops for screech tones of underexpanded free round jets at different modes. J Fluid Mech, p 902

  • Lim H, Wei X, Zang B, Vevek U, Mariani R, New T, Cui Y (2020) Short-time proper orthogonal decomposition of time-resolved schlieren images for transient jet screech characterization. Aerospace Sci Technol 107(106):276

    Google Scholar 

  • Lumley JL (1967) The structure of inhomogeneous turbulent flows. Atmos Turbulence Radio Wave Propag

  • Mercier B, Castelain T, Bailly C (2016) A schlieren and nearfield acoustic based experimental investigation of screech noise sources. In: 22nd AIAA/CEAS aeroacoustics conference, p 2799

  • Mercier B, Castelain T, Bailly C (2017) Experimental characterisation of the screech feedback loop in underexpanded round jets. J Fluid Mech 824:202–229

    Article  Google Scholar 

  • Nankai K, Ozawa Y, Nonomura T, Asai K (2019) Linear reduced-order model based on piv data of flow field around airfoil. Trans Japan Soc Aeronaut Space Sci 62(4):227–235. https://doi.org/10.2322/tjsass.62.227

    Article  Google Scholar 

  • Nickels A, Ukeiley L, Reger R, Cattafesta L III (2020) Low-order estimation of the velocity, hydrodynamic pressure, and acoustic radiation for a three-dimensional turbulent wall jet. Exp Thermal Fluid Sci 116(110):101

    Google Scholar 

  • Nishikori H (2022) Superresolution measurement of supersonic jet (in Japanese). M.S. thesis, Tohoku University, Sendai, JAPAN

  • Nonomura T, Nakano H, Ozawa Y, Terakado D, Yamamoto M, Fujii K, Oyama A (2019) Large eddy simulation of acoustic waves generated from a hot supersonic jet. Shock Waves, pp 1–22

  • Nonomura T, Ibuki T, Ozawa Y, Asai K, Oyama A (2021a) Generalized estimation methods of turbulent fluctuation of high-speed flow with single-pixel resolution particle image velocimetry. Measure Scie Technol 32(12):125306

  • Nonomura T, Nankai K, Iwasaki Y, Komuro A, Asai K (2021) Quantitative evaluation of predictability of linear reduced-order model based on particle-image-velocimetry data of separated flow field around airfoil. Exp Fluids 62:112

    Article  Google Scholar 

  • Nonomura T, Ozawa Y, Abe Y, Fujii K (2021) Computational study on aeroacoustic fields of a transitional supersonic jet. The J Acoust Soc Am 149(6):4484–4502

    Article  Google Scholar 

  • Ohmizu K, Ozawa Y, Nagata T, Nonomura T, Asai K (2022) Demonstration and verification of exact DMD analysis applied to double-pulsed schlieren image of supersonic impinging jet. J vis. https://doi.org/10.1007/s12650-022-00836-9

    Article  Google Scholar 

  • Ozawa Y, Nonomura T, Anyoji M, Mamori H, Fukushima N, Oyama A, Fujii K, Yamamoto M (2018) Identification of acoustic wave propagation pattern of a supersonic jet using frequency-domain pod. Trans Japan Soc Aeronaut Space Sci 61(6):281–284

    Article  Google Scholar 

  • Ozawa Y, Ibuki T, Nonomura T, Suzuki K, Komuro A, Ando A, Asai K (2020a) Single-pixel resolution velocity/convection velocity field of a supersonic jet measured by particle/schlieren image velocimetry. Exp Fluids, 61(6)

  • Ozawa Y, Nonomura T, Oyama A, Asai K (2020b) Effect of the reynolds number on the aeroacoustic fields of a transitional supersonic jet. Phys Fluids 32(4):046108

  • Ozawa Y, Nagata T, Nonomura T, Asai K (2021) POD-based spatio-temporal superresolution measurement on a supersonic jet using PIV and near-field acoustic data. In: AIAA AVIATION 2021 FORUM, p 2106

  • Panda J (1999) An experimental investigation of screech noise generation. J Fluid Mech 378:71–96

    Article  Google Scholar 

  • Pineau P, Bogey C (2021) Links between steepened mach waves and coherent structures for a supersonic jet. AIAA J 59(5):1673–1681

    Article  Google Scholar 

  • Pineau P, Bogey C (2021) Numerical investigation of wave steepening and shock coalescence near a cold mach 3 jet. The J Acoust Soc Am 149(1):357–370

    Article  Google Scholar 

  • Powell A (1953) The noise of choked jets. The J Acoust Soc Am 25(3):385–389

    Article  Google Scholar 

  • Powell A (1953) On the mechanism of choked jet noise. Proc Phys Soc Sect B 66(12):1039

    Article  Google Scholar 

  • Powell A, Umeda Y, Ishii R (1992) Observations of the oscillation modes of choked circular jets. The J Acoust Soc Am 92(5):2823–2836

    Article  Google Scholar 

  • Price TJ, Gragston M, Kreth PA (2021) Supersonic underexpanded jet features extracted from modal analyses of high-speed optical diagnostics. AIAA J, pp 1–18

  • Raman G (1999) Supersonic jet screech: half-century from powell to the present. J Sound Vib 225(3):543–571

    Article  Google Scholar 

  • Rao AN, Kushari A, Chandra Mandal A (2020) Screech characteristics of under-expanded high aspect ratio elliptic jet. Phys Fluids, 32(7):076106

  • Scharnowski S, Hain R, Kähler CJ (2012) Reynolds stress estimation up to single-pixel resolution using piv-measurements. Exp Fluids 52(4):985–1002

    Article  Google Scholar 

  • Schmid PJ (2010) Dynamic mode decomposition of numerical and experimental data. J Fluid Mech 656(July 2010):5–28, 10.1017/S0022112010001217, arXiv:1312.0041v1

  • Shariff K, Manning TA (2013) A ray tracing study of shock leakage in a model supersonic jet. Phys Fluids 25(7):076103

  • Suzuki T, Lele SK (2003) Shock leakage through an unsteady vortex-laden mixing layer: application to jet screech. J Fluid Mech 490:139–167

    Article  Google Scholar 

  • Suzuki T, Chatellier L, David L (2020) A few techniques to improve data-driven reduced-order simulations for unsteady flows. Comput Fluids 201(104):455

    MathSciNet  MATH  Google Scholar 

  • Taira K, Brunton SL, Dawson ST, Rowley CW, Colonius T, McKeon BJ, Schmidt OT, Gordeyev S, Theofilis V, Ukeiley LS (2017) Modal analysis of fluid flows: An overview. AIAA J, pp 4013–4041. Doi: https://doi.org/10.2514/1.J056060

  • Tam CK (1995) Supersonic jet noise. Annual Rev Fluid Mech 27(1):17–43

    Article  Google Scholar 

  • Tan DJ, Honnery D, Kalyan A, Gryazev V, Karabasov SA, Edgington-Mitchell D (2019) Correlation analysis of high-resolution particle image velocimetry data of screeching jets. AIAA J 57(2):735–748

    Article  Google Scholar 

  • Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B (Methodological) 58(1):267–288

    MathSciNet  MATH  Google Scholar 

  • Tinney C, Ukeiley L, Glauser MN (2008) Low-dimensional characteristics of a transonic jet. part 2. estimate and far-field prediction. J Fluid Mech 615:53–92

    Article  Google Scholar 

  • Tu JH, Griffin J, Hart A, Rowley CW, Cattafesta LN, Ukeiley LS (2013) Integration of non-time-resolved piv and time-resolved velocity point sensors for dynamic estimation of velocity fields. Exp Fluids 54(2):1–20

    Article  Google Scholar 

  • Tu JH, Rowley CW, Luchtenburg DM, Brunton SL, Kutz JN (2013b) On dynamic mode decomposition: theory and applications. arXiv preprint arXiv:13120041

  • Westerweel J, Geelhoed P, Lindken R (2004) Single-pixel resolution ensemble correlation for micro-piv applications. Exp Fluids 37(3):375–384

    Article  Google Scholar 

  • Yuan M, Lin Y (2006) Model selection and estimation in regression with grouped variables. J R Stat Soc Ser B (Statistical Methodology) 68(1):49–67

    Article  MathSciNet  Google Scholar 

  • Zhang Y, Cattafesta LN, Ukeiley L (2020) Spectral analysis modal methods (samms) using non-time-resolved piv. Exp Fluids 61(11):1–12

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by JSPS KAKENHI Grant Numbers JP18H03809, JP19KK0361, and JP20H00278, and the research grants from Shimadzu Science Foundation. T. Nagata was supported by Japan Science and Technology Agency, CREST Grant Number JPMJCR1763.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuta Ozawa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (AVI 115978 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozawa, Y., Nagata, T. & Nonomura, T. Spatiotemporal superresolution measurement based on POD and sparse regression applied to a supersonic jet measured by PIV and near-field microphone. J Vis 25, 1169–1187 (2022). https://doi.org/10.1007/s12650-022-00855-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-022-00855-6

Keywords

Navigation