Skip to main content
Log in

Review of passive control of flow past a circular cylinder

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

Flow around a circular cylinder is ubiquitous in nature and industrial applications. In marine, coastal and bridge engineering, undesirable vortex-induced vibrations (VIVs) of structural components are common, and the periodic vortex shedding (von K\(\acute{a}\)rmen vortex streets) of the cylinder plays a crucial role in the VIVs. Therefore, it makes sense to consider approaches to suppress vortex shedding and improve the surrounding flow of the cylinder. Two categories of flow control methods, i.e., passive and active strategies, effectively handled this problem. Compared to active control, the passive control method does not require additional energy input to maintain the process and is easier and more cost-effective to implement, making it worth investigating. This selective literature review gives academic frontiers on passive control of flow past a circular cylinder, including splitter plate, groove, screen, rough surfaces, spirals and helical plates, slit passive jets, control rods, porous media coating and vortex generators. Finally, we give a brief outlook on the application of machine deep learning methods in the passive control of flow around a circular cylinder.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62

Similar content being viewed by others

References

  • Achenbach E (1971) Influence of surface roughness on the cross-flow around a circular cylinder. J Fluid Mech 46:321–335

    Article  Google Scholar 

  • Apelt C, West G (1975) The effects of wake splitter plates on bluff-body flow in the range 104¡ r¡ 5\(\times\) 104. part 2. J Fluid Mech 71:145–160

  • Apelt C, West G, Szewczyk AA (1973) The effects of wake splitter plates on the flow past a circular cylinder in the range 104¡ r¡ 5\(\times\) 104. J Fluid Mech 61:187–198

  • Arcondoulis E, Ragni D, Rubio Carpio A, Avallone F, Liu Y, Yang Y, Li Z, (2019)a The internal and external flow fields of a structured porous coated cylinder and implications on flow-induced noise. In: 25th AIAA/CEAS aeroacoustics conference, p. 2648

  • Arcondoulis EJ, Geyer TF, Liu Y (2021) An investigation of wake flows produced by asymmetrically structured porous coated cylinders. Phys Fluids 33:037124

    Article  Google Scholar 

  • Arcondoulis EJ, Liu Y, Li Z, Yang Y, Wang Y (2019) Structured porous material design for passive flow and noise control of cylinders in uniform flow. Materials 12:2905

    Article  Google Scholar 

  • Assi GR, Bearman P, Kitney N (2009) Low drag solutions for suppressing vortex-induced vibration of circular cylinders. J Fluids Struct 25:666–675

    Article  Google Scholar 

  • Baek H, Karniadakis GE (2009) Suppressing vortex-induced vibrations via passive means. J Fluids Struct 25:848–866

    Article  Google Scholar 

  • Bearman P, Harvey J (1976) Golf ball aerodynamics. Aeronaut Q 27:112–122

    Article  Google Scholar 

  • Bearman PW (1984) Vortex shedding from oscillating bluff bodies. Annu Rev Fluid Mech 16:195–222

    Article  MATH  Google Scholar 

  • Bearman PW, Tombazis N (1993) The effects of three-dimensional imposed disturbances on bluff body near wake flows. J Wind Eng Ind Aerodyn 49:339–349

    Article  Google Scholar 

  • Bernitsas MM, Raghavan K, Ben-Simon Y, Garcia E (2008) Vivace (vortex induced vibration aquatic clean energy): a new concept in generation of clean and renewable energy from fluid flow. J Offshore Mech Arct Eng 130

  • Butt U, Jehring L, Egbers C (2014) Mechanism of drag reduction for circular cylinders with patterned surface. Int J Heat Fluid Flow 45:128–134

    Article  Google Scholar 

  • Chen W, Li H, Ou J, Li F (2011) Field monitoring of vortex induced vibration of stay cables of cable-stayed bridge. In: proceedings of the 9th international symposium on cable dynamics, Shanghai, China, pp. 257–264

  • Chen WL, Gao D, Laima S, Li H (2019) A field investigation on vortex-induced vibrations of stay cables in a cable-stayed bridge. Appl Sci 9:4556

    Article  Google Scholar 

  • Chen WL, Gao DL, Yuan WY, Li H, Hu H (2015) Passive jet control of flow around a circular cylinder. Exp Fluids 56:1–15

    Article  Google Scholar 

  • Choi H, Jeon WP, Kim J (2008) Control of flow over a bluff body. Annu Rev Fluid Mech 40:113–139

    Article  MATH  Google Scholar 

  • Cimbala JM, Garg S (1991) Flow in the wake of a freely rotatable cylinder with splitter plate. AIAA J 29:1001–1003

    Article  Google Scholar 

  • Ding L, Bernitsas MM, Kim ES (2013) 2-d urans vs. experiments of flow induced motions of two circular cylinders in tandem with passive turbulence control for 30,000< re< 105,000. Ocean Eng 72:429–440

    Article  Google Scholar 

  • Dong S, Triantafyllou G, Karniadakis G (2008) Elimination of vortex streets in bluff-body flows. Phys Rev Lett 100:204501

    Article  Google Scholar 

  • Durhasan T, Pinar E, Ozkan G, Akilli H, Sahin B (2019) The effect of shroud on vortex shedding mechanism of cylinder. Appl Ocean Res 84:51–61

    Article  Google Scholar 

  • Fouatih OM, Medale M, Imine O, Imine B (2016) Design optimization of the aerodynamic passive flow control on naca 4415 airfoil using vortex generators. Eur J Mech-B/Fluids 56:82–96

    Article  Google Scholar 

  • Gao D, Chang X, Tursuntohti T, Yu H, Chen WL (2022) Modification of subcritical cylinder flow with an upstream rod. Phys Fluids 34:015107

    Article  Google Scholar 

  • Gao D, Chen WL, Zhang RT, Huang YW, Li H (2019) Multi-modal vortex-and rain-wind-induced vibrations of an inclined flexible cable. Mech Syst Signal Process 118:245–258

    Article  Google Scholar 

  • Gao D, Huang Y, Chen WL, Chen G, Li H (2019) Control of circular cylinder flow via bilateral splitter plates. Phys Fluids 31:057105

    Article  Google Scholar 

  • Gao DL, Chen WL, Li H, Hu H (2017) Flow around a circular cylinder with slit. Exp Thermal Fluid Sci 82:287–301

    Article  Google Scholar 

  • Gao DL, Chen WL, Li H, Hu H (2017) Flow around a slotted circular cylinder at various angles of attack. Exp Fluids 58:1–15

    Article  Google Scholar 

  • Gao Y, Yang J, Xiong Y, Wang M, Peng G (2016) Experimental investigation of the effects of the coverage of helical strakes on the vortex-induced vibration response of a flexible riser. Appl Ocean Res 59:53–64

    Article  Google Scholar 

  • Hiwada M, Taguchi T, Mabuichi I, Kumada M (1979) Fluid flow and heat transfer around two circular cylinders of different diameters in cross flow. Bull JSME 22:715–723

    Article  Google Scholar 

  • Huang S, Clelland D, Day S, James R, (2007) Drag reduction of deepwater risers by the use of helical grooves. In: international conference on offshore mechanics and arctic engineering, pp. 561–565

  • Kimura T, Tsutahara M (1991) Fluid dynamic effects of grooves on circular cylinder surface. AIAA J 29:2062–2068

    Article  MATH  Google Scholar 

  • Korkischko I, Meneghini J (2010) Experimental investigation of flow-induced vibration on isolated and tandem circular cylinders fitted with strakes. J Fluids Struct 26:611–625

    Article  Google Scholar 

  • Kwon K, Choi H (1996) Control of laminar vortex shedding behind a circular cylinder using splitter plates. Phys Fluids 8:479–486

    Article  MATH  Google Scholar 

  • Law Y, Jaiman R (2018) Passive control of vortex-induced vibration by spanwise grooves. J Fluids Struct 83:1–26

    Article  Google Scholar 

  • Lee SJ, Lee SI, Park CW (2004) Reducing the drag on a circular cylinder by upstream installation of a small control rod. Fluid Dyn Res 34:233

    Article  Google Scholar 

  • Li J, Zhang M, Martins JR, Shu C (2020) Efficient aerodynamic shape optimization with deep-learning-based geometric filtering. AIAA J 58:4243–4259

    Article  Google Scholar 

  • Li Z, Tang T, Liu Y, Arcondoulis EJ, Yang Y (2020) Numerical study of aerodynamic and aeroacoustic characteristics of flow over porous coated cylinders: effects of porous properties. Aerosp Sci Technol 105:106042

    Article  Google Scholar 

  • Lin JC (2002) Review of research on low-profile vortex generators to control boundary-layer separation. Prog Aerosp Sci 38:389–420

    Article  Google Scholar 

  • Liu H, Wei J, Qu Z (2012) Prediction of aerodynamic noise reduction by using open-cell metal foam. J Sound Vib 331:1483–1497

    Article  Google Scholar 

  • Ma LQ, Feng LH (2019) Vortex formation and evolution for flow over a circular cylinder excited by symmetric synthetic jets. Exp Thermal Fluid Sci 104:89–104

    Article  Google Scholar 

  • Matsumoto M, Yagi T, Hatsuda H, Shima T, Tanaka M, Naito H (2010) Dry galloping characteristics and its mechanism of inclined/yawed cables. J Wind Eng Ind Aerodyn 98:317–327

    Article  Google Scholar 

  • Naumann A (1966) The conditions of separation and vortex formation past cylinders. In: AGARD conference proceedings no. 4, Separated Flows

  • Oruc V (2012) Passive control of flow structures around a circular cylinder by using screen. J Fluids Struct 33:229–242

    Article  Google Scholar 

  • Ozkan GM, Firat E, Akilli H (2017) Passive flow control in the near wake of a circular cylinder using attached permeable and inclined short plates. Ocean Eng 134:35–49

    Article  Google Scholar 

  • Park H, Bernitsas MM, Ajith KR (2012) Selective roughness in the boundary layer to suppress flow-induced motions of circular cylinder at 30,000< re< 120,000. J Offshore Mechanics Arctic Eng 134

  • Park H, Bernitsas MM, Chang CC (2013) Map of passive turbulence control to flow-induced motions for a circular cylinder at 30,000< re< 120,000: sensitivity to zone covering. In: international conference on offshore mechanics and arctic engineering, American Society of Mechanical Engineers. p. V007T08A003

  • Rashidi S, Hayatdavoodi M, Esfahani JA (2016) Vortex shedding suppression and wake control: a review. Ocean Eng 126:57–80

    Article  Google Scholar 

  • Reddy G, Celani A, Sejnowski TJ, Vergassola M (2016) Learning to soar in turbulent environments. Proc Natl Acad Sci 113:E4877–E4884

    Article  Google Scholar 

  • Roshko A (1955) On the wake and drag of bluff bodies. J Aeronaut Sci 22:124–132

    Article  MATH  Google Scholar 

  • Sarpkaya T (2004) A critical review of the intrinsic nature of vortex-induced vibrations. J Fluids Struct 19:389–447

    Article  Google Scholar 

  • Shukla S, Govardhan R, Arakeri J (2013) Dynamics of a flexible splitter plate in the wake of a circular cylinder. J Fluids Struct 41:127–134

    Article  Google Scholar 

  • Singh N (2019) Control of laminar separation bubble using vortex generators. J Appl Fluid Mech 12:891–905

    Article  Google Scholar 

  • Strykowski PJ, Sreenivasan KR (1990) On the formation and suppression of vortex ‘shedding’ low reynolds numbers. J Fluid Mech 218: 71–107

  • Sumer B.M, Fredsøe J (1997) Hydrodynamics around cylindrical structures, pp. xviii+ 530

  • Taylor H (1947) The elimination of diffuser separation by vortex generators research department report no. r-4012-3 united aircraft corporation. East Hartford, Connecticut

  • Tombazis N, Bearman P (1997) A study of three-dimensional aspects of vortex shedding from a bluff body with a mild geometric disturbance. J Fluid Mech 330:85–112

    Article  Google Scholar 

  • Ünal UO, Gören Ö (2011) Effect of vortex generators on the flow around a circular cylinder: computational investigation with two-equation turbulence models. Eng Appl Comput Fluid Mech 5:99–116

    Google Scholar 

  • Viquerat J, Rabault J, Kuhnle A, Ghraieb H, Larcher A, Hachem E (2021) Direct shape optimization through deep reinforcement learning. J Comput Phys 428:110080

    Article  MATH  Google Scholar 

  • Williamson CH, Govardhan R (2004) Vortex-induced vibrations. Annu Rev Fluid Mech 36:413–455

    Article  MATH  Google Scholar 

  • Wu J, Shu C, Zhao N (2014) Numerical investigation of vortex-induced vibration of a circular cylinder with a hinged flat plate. Phys Fluids 26:063601

    Article  Google Scholar 

  • Xin ZQ, Wu ZH, Wu CJ, Huang D (2020) Control of vortex-induced vibrations of the cylinder by using split-ter plates immersed in the cylinder wake at low reynolds number. J Hydrodyn 32:942–952

    Article  Google Scholar 

  • Xu M, Song S, Sun X, Chen W, Zhang W (2021) Machine learning for adjoint vector in aerodynamic shape optimization. Acta Mechanica Sinica , 1–17

  • Xu Z, Chang X, Yu H, Chen W.L, Gao D, (2022) Structured porous surface for drag reduction and wake attenuation of cylinder flow. Ocean Eng, 110444

  • Yan X, Zhu J, Kuang M, Wang X (2019) Aerodynamic shape optimization using a novel optimizer based on machine learning techniques. Aerosp Sci Technol 86:826–835

    Article  Google Scholar 

  • Yuan W, Laima S, Gao D, Chen WL, Li H (2021) Influence of porous media coatings on flow characteristics and vortex-induced vibration of circular cylinders. J Fluids Struct 106:103365

    Article  Google Scholar 

  • Zhou B, Wang X, Guo W, Gho WM, Tan SK (2015) Control of flow past a dimpled circular cylinder. Exp Thermal Fluid Sci 69:19–26

    Article  Google Scholar 

  • Zhou T, Razali SM, Hao Z, Cheng L (2011) On the study of vortex-induced vibration of a cylinder with helical strakes. J Fluids Struct 27:903–917

    Article  Google Scholar 

  • Zhu H, Liu W (2020) Flow control and vibration response of a circular cylinder attached with a wavy plate. Ocean Eng 212:107537

    Article  Google Scholar 

  • Zhu H, Yao J (2015) Numerical evaluation of passive control of viv by small control rods. Appl Ocean Res 51:93–116

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the financial supports from the National Natural Science Foundation of China (52008140, 51978222) and the Fundamental Research Funds for the Central Universities (2020AUGA5710001020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donglai Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ran, Y., Deng, Z., Yu, H. et al. Review of passive control of flow past a circular cylinder. J Vis 26, 1–44 (2023). https://doi.org/10.1007/s12650-022-00858-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-022-00858-3

Keywords

Navigation