Skip to main content
Log in

Accumulation of lead and associated metals (Cu and Zn) at different growth stages of soybean crops in lead-contaminated soils: food security and crop quality implications

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The Pb, Cu and Zn content, the physicochemical parameters in soils (EC, OM%, soil texture and pH) and the metal accumulation of Glycine max plants at different growth stages were evaluated. Topsoil and soybean samples were collected in the vicinity of a former battery-recycling plant, with the results showing that only the concentrations of Pb in soils corresponding to sites located near to the lead emission source were above the maximum permissible levels. However, soybean crops accumulated Pb above the permitted levels at all studied sites, revealing a potential toxicological risk for direct consumption. Thus, the accumulation of Pb in soybean was directly related to the translocation factor of the metal from roots to aerial parts of the plant. This was evidenced as a lower accumulation at early growth stages and a higher accumulation at maturity, with the distribution between organs coinciding with nutrient incorporation and remobilization in the plant. Moreover, the bioconcentration factor revealed that the bioaccumulation of lead in soybean was a consequence of the lead-recycling plant activity in the past. Taken together, results of the present study demonstrated that soybean crops can incorporate and accumulate potentially toxic metals, such as lead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abouelnasr DM (2010) The relationship between soil particle size and lead concentration. Proc Annu Int Conf Soils Sediments Water Energy 14:8

    Google Scholar 

  • CAA (2010) Código Alimentario Argentino Ley 18284. Capítulo III, de los productos alimentarios. ANMAT. http://anmat.gov.ar/alimentos/codigoa/Capitulo_III.pdf. Accessed 20 June 2016

  • Cabral M et al (2015) Effects of environmental cadmium and lead exposure on adults neighboring a discharge: evidences of adverse health effects. Environ Pollut 206:247–255

    Article  Google Scholar 

  • CCME Canadian Council of Ministers of the Environment (2007) Canadian soil quality guidelines for the protection of environmental and human health: Summary tables. Updated September, 2007. In: Canadian environmental quality guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg, pp 1–6

  • Chongpraditnun P, Mori S, Chino M (1992) Excess copper induces a cytosolic Cu, Zn-superoxide dismutase in soybean root. Plant Cell Physiol 33:239–244

    Article  Google Scholar 

  • Dahmani-Muller H, Van Oort F, Gelie B, Balabane M (2000) Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environ Pollut 109:231–238

    Article  Google Scholar 

  • Di Rienzo JA, Guzmán AW, Casanoves F (2002) A multiple-comparisons method based on the distribution of the root node distance of a binary tree. J Agric Biol Envir Stat 7:129–142

    Article  Google Scholar 

  • EC (2006) COMMISSION REGULATION (EC) No 1881/2006 of 19 December 2006 Setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European Union. http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:02006R1881-20100701&from=EN. Accessed 20 June 2016

  • EPA (1989) Risk assessment guidance for superfund. Volume I: Human health evaluation manual (Part A). (EPA/540/1-89/002). Office of Emergency and Remedial Response. US EPA, Washington DC

  • EPA (2010) Region 9. Preliminary remediation goals. http://www.epa.gov/region9/superfund/prg/index.html. Accessed 10 June 2016

  • Fehr WR, Caviness CE (1977) Stages of soybean development. Special report no 80. Iowa State University: Ames, IA

  • Fernandez-Turiel J, Aceñolaza P, Medina ME, Llorens J, Sardi F (2001) Assessment of a smelter impact area using surface soils and plants. Environ Geochem Health 23:65–78

    Article  Google Scholar 

  • Franco D (2010). Aceite de soja, Analisis de cadena alimentaria. Direccion Nacional de Alimentos, Camara de la industria aceitera de la Republica Argentina. http://www.ciaracec.com.ar/ciara/estudios/archivo/000000Archivosformatopdf/050700072005CadenaAceiteSojaSAGPyA.pdf. Accessed 12 June 2016

  • Gaiero D et al (2013) Ground/satellite observations and atmospheric modeling of dust storms originating in the high Puna-Altiplano deserts (South America): implications for the interpretation of paleo-climatic archives. J Geophys Res Atmos 118:3817–3831

    Article  Google Scholar 

  • Goldstein S, Fridovich I, Czapski G (2006) Kinetic properties of Cu, Zn-superoxide dismutase as a function of metal content—order restored. Free Radical Bio Med 41:937–941

    Article  Google Scholar 

  • Graziani N, Salazar MJ, Pignata ML, Rodriguez JH (2015) Assessment of the root system of Brassica juncea (L.) Czern. and Bidens pilosa L. exposed to lead polluted soils using rhizobox systems. Int J Phytoremediat 18:235–244

    Article  Google Scholar 

  • Gunawardana B, Singhal N, Johnson A (2011) Effects of amendments on copper, cadmium, and lead phytoextraction by Lolium perenne from multiple-metal contaminated solution. Int J Phytoremediat 13:215–232

    Article  Google Scholar 

  • Himelblau E, Amasino RM (2001) Nutrients mobilized from leaves of Arabidopsis thaliana during leaf senescence. J Plant Physiol 158:1317–1323

    Article  Google Scholar 

  • Huang J, Cunningham S (1996) Lead phytoextraction: species variation in lead uptake and translocation. New Phytol 134:75–84

    Article  Google Scholar 

  • Huang M, Zhou S, Sun B, Zhao Q (2008) Heavy metals in wheat grain: assessment of potential health risk for inhabitants in Kunshan, China. Sci Total Environ 405:54–61

    Article  Google Scholar 

  • INTA (2010) Estructura Productiva. http://www.inta.gov.ar/manfredi/info/documentos/economia/carinaanchez/entornoestructuraproductivahomo.htm. Accesed 10 Feb 2016

  • ISTA (2013) International Rules for Seed Testing. Rules 2003, ISTA International Seed Testing Association, Zurich

  • Kabata-Pendias A (2010) Trace elements in soils and plants. CRC Press, Boca Raton

    Book  Google Scholar 

  • Kabata-Pendias A, Sadurski W (2004) Trace elements and compounds in soil. In: Merian E, Anke M, Ihnat M, Stoeppler M (eds) Elements and their compounds in the environment. Wiley, New York, pp 79–99

    Chapter  Google Scholar 

  • Keinan-Boker L et al (2002) Soy product consumption in 10 European countries: the European prospective investigation into cancer and nutrition (EPIC) study. Public Health Nutr 5:1217–1226

    Article  Google Scholar 

  • Lavado RS (2006) Concentration of potentially toxic elements in field crops grown near and far from cities of the Pampas (Argentina). J Environ Manage 80:116–119

    Article  Google Scholar 

  • Lavado RS, Porcelli CA, Alvarez R (2001) Nutrient and heavy metal concentration and distribution in corn, soybean and wheat as affected by different tillage systems in the Argentine Pampas. Soil Tillage Res 62:55–60

    Article  Google Scholar 

  • Li Q, Chen Y, Fu H, Cui Z, Shi L, Wang L, Liu Z (2012) Health risk of heavy metals in food crops grown on reclaimed tidal flat soil in the Pearl River Estuary, China. J Hazard Mater 227–228:148–154

    Article  Google Scholar 

  • Li H, Shi A, Zhang X (2015) Particle size distribution and characteristics of heavy metals in road-deposited sediments from Beijing Olympic Park. J Environ Sci 32:228–237

    Article  Google Scholar 

  • Liao Y, Chien S, Wang M, Shen Y, Hung P, Das B (2006) Effect of transpiration on Pb uptake by lettuce and on water soluble low molecular weight organic acids in rhizosphere. Chemosphere 65:343–351

    Article  Google Scholar 

  • Lim J-M, Salido AL, Butcher DJ (2004) Phytoremediation of lead using Indian mustard (Brassica juncea) with EDTA and electrodics. Microchem J 76:3–9

    Article  Google Scholar 

  • Nagajyoti P, Lee K, Sreekanth T (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  Google Scholar 

  • Peltola P, Åström M (2003) Urban geochemistry: a multimedia and multielement survey of a small town in northern Europe. Environ Geochem Health 25:397–419

    Article  Google Scholar 

  • Pourrut B, Perchet G, Silvestre J, Cecchi M, Guiresse M, Pinelli E (2008) Potential role of NADPH-oxidase in early steps of lead-induced oxidative burst in Vicia faba roots. J Plant Physiol 165:571–579

    Article  Google Scholar 

  • Reed BE, Berg MT, Thompson JC, Hatfield JH (1995) Chemical conditioning of electrode reservoirs during electrokinetic soil flushing of Pb-contaminated silt loam. J Environ Eng 121:805–815

    Article  Google Scholar 

  • Rodriguez J, Klumpp A, Fangmeier A, Pignata M (2011) Effects of elevated CO2 concentrations and fly ash amended soils on trace element accumulation and translocation among roots, stems and seeds of Glycine max (L.) Merril. J Hazard Mater 187:58–66

    Article  Google Scholar 

  • Rodriguez JH, Salazar MJ, Steffan L, Pignata ML, Franzaring J, Klumpp A, Fangmeier A (2014) Assessment of Pb and Zn contents in agricultural soils and soybean crops near to a former battery recycling plant in Córdoba, Argentina. J Geochem Explor 145:129–134

    Article  Google Scholar 

  • Salazar MJ, Pignata ML (2014) Lead accumulation in plants grown in polluted soils. Screening of native species for phytoremediation. J Geochem Explor 137:29–36

    Article  Google Scholar 

  • Salazar MJ, Rodriguez JH, Nieto GL, Pignata ML (2012) Effects of heavy metal concentrations (Cd, Zn and Pb) in agricultural soils near different emission sources on quality, accumulation and food safety in soybean [Glycine max (L.) Merrill]. J Hazard Mater 233–234:244–253

    Article  Google Scholar 

  • Sauvé S, McBride MC, Norvell WA, Hendershot WH (1997) Copper solubility and speciation of in situ contaminated soils: effects of copper level, pH, and organic matter. Water Air Soil Pollut 100:133–149

    Article  Google Scholar 

  • Szőllősi R (2014) Chapter 3—Superoxide dismutase (SOD) and abiotic stress tolerance in plants: an overview. In: Ahmad P (ed) Oxidative damage to plants. Academic Press, San Diego, pp 89–129

    Chapter  Google Scholar 

  • Taiz L, Zeiger E (2002) Plant physiology. Sinauer Associates Inc Publishers, Sunderland

    Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851

    Article  Google Scholar 

  • USDA (2006) Keys to soil taxonomy. Natural resources conservation service, USDA. https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052172.pdf. Accessed 20 Feb 2016

  • Wahsha M, Fontana S, Nadimi-Goki M, Bini C (2014) Potentially toxic elements in foodcrops (Triticum aestivum L., Zea mays L.) grown on contaminated soils. J Geochem Explor 147(Part B):189–199

    Article  Google Scholar 

  • Wang H-H, Shan X-Q, Wen B, Owens G, Fang J, Zhang S-Z (2007) Effect of indole-3-acetic acid on lead accumulation in maize (Zea mays L.) seedlings and the relevant antioxidant response. Environ Exp Bot 61:246–253

    Article  Google Scholar 

  • Zhao Y, Fang X, Mu Y, Cheng Y, Ma Q, Nian H, Yang C (2014) Metal pollution (Cd, Pb, Zn, and As) in agricultural soils and soybean, Glycine max, in southern China. Bull Environ Contam Toxicol 92:427–432

    Article  Google Scholar 

  • Zheng N, Wang Q, Zhang X, Zheng D, Zhang Z, Zhang S (2007) Population health risk due to dietary intake of heavy metals in the industrial area of Huludao city, China. Sci Total Environ 387:96–104

    Article  Google Scholar 

  • Zhuang P, Li Z-A, Zou B, Xia H-P, Wang G (2013) Heavy metal contamination in soil and soybean near the Dabaoshan Mine, South China. Pedosphere 23:298–304

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Secretaría de Ciencia y Técnica de la Universidad Nacional de Córdoba, UNC, (Res. 203/2014), Fondo para la Investigación Científica y Técnica (PICT 2011-2342; 2011-0084; 2013-0988) and Consejo de Investigaciones Científicas y Técnicas (11220120100402CO). The authors Blanco and Vergara Cid (Ph.D. students in Biological Sciences, UNC) and Salazar were funded by CONICET through scholarships. We would especially like to thank the Brazilian Synchrotron Light Source (LNLS) (partially supported under proposals XAFS1-15165 and XAFS1-15981). Special thanks are also due to the land owner and mayor of Bouwer (J. Lupi) and to Dr. P. Hobson (native speaker) for language revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith H. Rodriguez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12665_2017_6508_MOESM1_ESM.pptx

Supplementary Table 1. Bioconcentration factor (BCF) and translocation factor (TF) of Pb in soybean in the study area (PPTX 137 kb)

Supplementary Figure 1. Simple linear regression between Pb Mob (dependent variable) and pH (regressor) (PPTX 73 kb)

12665_2017_6508_MOESM3_ESM.docx

Supplementary Figure 2. (A) Target hazard quotients (THQ) of Pb for soybean consumption of Chinese and European-Argentine inhabitants. (B) Non-carcinogenic risk index (HI) for soybean consumption of Chinese and European-Argentine inhabitants (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanco, A., Salazar, M.J., Vergara Cid, C. et al. Accumulation of lead and associated metals (Cu and Zn) at different growth stages of soybean crops in lead-contaminated soils: food security and crop quality implications. Environ Earth Sci 76, 182 (2017). https://doi.org/10.1007/s12665-017-6508-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6508-x

Keywords

Navigation