Skip to main content

Advertisement

Log in

A novel hybrid of meta-optimization approach for flash flood-susceptibility assessment in a monsoon-dominated watershed, Eastern India

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The exponential growth in the number of flash flood events is a global threat, and detecting a flood-prone area has also become a top priority. The flash flood-susceptibility mapping can help to mitigate the worst effects of this type of risk phenomenon. However, there is an urgent need to construct precise models for predicting flash flood-susceptibility mapping, which can be useful in developing more effective flood management strategies. In this present research, support vector regression (SVR) was coupled with two meta-heuristic algorithms such as particle swarm optimization (PSO) and grasshopper optimization algorithm (GOA), to construct new GIS-based ensemble models (SVR–PSO and SVR–GOA) for flash flood-susceptibility mapping (FFSM) in the Gandheswari River basin, West Bengal, India. In this regard, 16 topographical and environmental flood causative factors have been identified to run the models using the multicollinearity (MC) test. The entire dataset was divided into 70:30 for training and validating purposes. Statistical measures including specificity, sensitivity, PPV, NPV, AUC–ROC, kappa and Taylor diagram have been employed to validate adopted models. The SVR-based factor importance analysis was employed to choose and prioritize significant factors for the spatial analysis. Among the three modeling approaches used here, the ensemble method of SVR–GOA is the most optimal (specificity 0.97 and 0.87, sensitivity 0.99 and 0.91, PPV 0.97 and 0.86, NPV 0.99 and 0.91, AUC 0.951 and 0.938 in training and validation, respectively), followed by the SVR–PSO (specificity 0.84 and 0.84, sensitivity 0.87 and 0.86, PPV 0.85 and 0.82, NPV 0.87 and 0.87, AUC 0.951 and 0.938 in training and validation, respectively) and SVR (specificity 0.80 and 0.77, sensitivity 0.93 and 0.89, PPV 0.82 and 0.77, NPV 0.91 and 0.89, AUC 0.951 and 0.938 in training and validation, respectively) model. The result shown that 40.10 km2 (10.99%) and 25.94 km2 (7.11%) areas are under very high and high flood-prone regions, respectively. This produced reliable results that can help policymakers at the local and national levels to implement a concrete strategy with an early warning system to reduce the occurrence of floods in a region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adnan RM, Mostafa RR, Kisi O et al (2021) Improving streamflow prediction using a new hybrid ELM model combined with hybrid particle swarm optimization and grey wolf optimization. Knowl-Based Syst 230:107379. https://doi.org/10.1016/j.knosys.2021.107379

    Article  Google Scholar 

  • Aerts JCJH, Botzen WJ, Clarke KC et al (2018) Integrating human behaviour dynamics into flood disaster risk assessment. Nat Clim Chang 8:193–199. https://doi.org/10.1038/s41558-018-0085-1

    Article  Google Scholar 

  • Al-Abadi AM (2018) Mapping flood susceptibility in an arid region of southern Iraq using ensemble machine learning classifiers: a comparative study. Arab J Geosci 11:218. https://doi.org/10.1007/s12517-018-3584-5

    Article  Google Scholar 

  • Alatas B, Akin E, Ozer AB (2009) Chaos embedded particle swarm optimization algorithms. Chaos, Solitons Fractals 40:1715–1734

    Google Scholar 

  • Arabameri A, Rezaei K, Pourghasemi HR et al (2018) GIS-based gully erosion susceptibility mapping: a comparison among three data-driven models and AHP knowledge-based technique. Environ Earth Sci 77:628. https://doi.org/10.1007/s12665-018-7808-5

    Article  Google Scholar 

  • Arabameri A, Rezaei K, Cerdà A et al (2019) A comparison of statistical methods and multi-criteria decision making to map flood hazard susceptibility in Northern Iran. Sci Total Environ 660:443–458. https://doi.org/10.1016/j.scitotenv.2019.01.021

    Article  Google Scholar 

  • Arabameri A, Arora A, Pal SC et al (2021) K-fold and state-of-the-art metaheuristic machine learning approaches for groundwater potential modelling. Water Resour Manag 35:1837–1869

    Google Scholar 

  • Arora S, Anand P (2019a) Chaotic grasshopper optimization algorithm for global optimization. Neural Comput Appl 31:4385–4405

    Google Scholar 

  • Arora S, Anand P (2019b) Chaotic grasshopper optimization algorithm for global optimization. Neural Comput Appl 31:4385–4405. https://doi.org/10.1007/s00521-018-3343-2

    Article  Google Scholar 

  • Arora A, Arabameri A, Pandey M et al (2021) Optimization of state-of-the-art fuzzy-metaheuristic ANFIS-based machine learning models for flood susceptibility prediction mapping in the Middle Ganga Plain, India. Sci Total Environ 750:141565

    Google Scholar 

  • Awad M, Khanna R (2015) Support vector regression. In: Awad M, Khanna R (eds) Efficient learning machines: theories, concepts, and applications for engineers and system designers. Apress, Berkeley, CA, pp 67–80

    Google Scholar 

  • Balogun A-L, Rezaie F, Pham QB et al (2021) Spatial prediction of landslide susceptibility in western Serbia using hybrid support vector regression (SVR) with GWO, BAT and COA algorithms. Geosci Front 12:101104. https://doi.org/10.1016/j.gsf.2020.10.009

    Article  Google Scholar 

  • Band SS, Janizadeh S, Chandra Pal S et al (2020a) Novel ensemble approach of deep learning neural network (DLNN) model and particle swarm optimization (PSO) algorithm for prediction of gully erosion susceptibility. Sensors 20:5609

    Google Scholar 

  • Band SS, Janizadeh S, Chandra Pal S et al (2020b) Flash flood susceptibility modeling using new approaches of hybrid and ensemble tree-based machine learning algorithms. Remote Sens 12:3568. https://doi.org/10.3390/rs12213568

    Article  Google Scholar 

  • Bazai NA, Cui P, Carling PA et al (2020) Increasing glacial lake outburst flood hazard in response to surge glaciers in the Karakoram. Earth-Sci Rev 212:103432

    Google Scholar 

  • Bubeck P, Thieken AH (2018) What helps people recover from floods? Insights from a survey among flood-affected residents in Germany. Reg Environ Chang 18:287–296. https://doi.org/10.1007/s10113-017-1200-y

    Article  Google Scholar 

  • Bui DT, Panahi M, Shahabi H et al (2018) Novel hybrid evolutionary algorithms for spatial prediction of floods. Sci Rep 8:15364. https://doi.org/10.1038/s41598-018-33755-7

    Article  Google Scholar 

  • Burgan Hİ, Icaga Y (2019) Flood analysis using adaptive hydraulics (ADH) model in Akarcay Basin. Teknik Dergi 30:9029–9051. https://doi.org/10.18400/tekderg.416067

    Article  Google Scholar 

  • Carletta J (1996) Assessing agreement on classification tasks: the kappa statistic. Comput Linguist 22:249–254

    Google Scholar 

  • Chang L-C, Amin MZM, Yang S-N, Chang F-J (2018) Building ANN-based regional multi-step-ahead flood inundation forecast models. Water 10:1283. https://doi.org/10.3390/w10091283

    Article  Google Scholar 

  • Chang TK, Talei A, Chua LHC, Alaghmand S (2019) The impact of training data sequence on the performance of neuro-fuzzy rainfall-runoff models with online learning. Water 11:52. https://doi.org/10.3390/w11010052

    Article  Google Scholar 

  • Chapi K, Singh VP, Shirzadi A et al (2017) A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environ Model Softw 95:229–245. https://doi.org/10.1016/j.envsoft.2017.06.012

    Article  Google Scholar 

  • Cheng S, Lu H, Lei X, Shi Y (2018) A quarter century of particle swarm optimization. Complex Intell Syst 4:227–239

    Google Scholar 

  • Choubin B, Moradi E, Golshan M et al (2019) An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Sci Total Environ 651:2087–2096. https://doi.org/10.1016/j.scitotenv.2018.10.064

    Article  Google Scholar 

  • Chowdhuri I, Pal SC, Chakrabortty R (2020) Flood susceptibility mapping by ensemble evidential belief function and binomial logistic regression model on river basin of eastern India. Adv Space Res 65:1466–1489. https://doi.org/10.1016/j.asr.2019.12.003

    Article  Google Scholar 

  • Cosby BJ, Hornberger GM, Clapp RB, Ginn TR (1984) A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour Res 20:682–690. https://doi.org/10.1029/WR020i006p00682

    Article  Google Scholar 

  • Costache R, Tien Bui D (2020) Identification of areas prone to flash-flood phenomena using multiple-criteria decision-making, bivariate statistics, machine learning and their ensembles. Sci Total Environ 712:136492. https://doi.org/10.1016/j.scitotenv.2019.136492

    Article  Google Scholar 

  • Dodangeh E, Panahi M, Rezaie F et al (2020) Novel hybrid intelligence models for flood-susceptibility prediction: meta optimization of the GMDH and SVR models with the genetic algorithm and harmony search. J Hydrol 590:125423

    Google Scholar 

  • Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1:28–39

    Google Scholar 

  • Drucker H, Burges C, Kaufman L et al (1997) Support vector regression machines. Adv Neural Inform Process Syst 28:779–784

    Google Scholar 

  • Dunning I, Huchette J, Lubin M (2017) JuMP: a modeling language for mathematical optimization. SIAM Rev 59:295–320

    Google Scholar 

  • El-Fergany AA (2017) Electrical characterisation of proton exchange membrane fuel cells stack using grasshopper optimiser. IET Renew Power Gener 12:9–17

    Google Scholar 

  • Falah F, Rahmati O, Rostami M et al (2019) Artificial neural networks for flood susceptibility mapping in data-scarce urban areas. In: Pourghasemi HR, Gokceoglu C (eds) Spatial modeling in GIS and R for earth and environmental sciences. Elsevier, pp 323–336

    Google Scholar 

  • Florinsky I (2016) Topographic surface and its characterization. Elsevier, pp 7–76

    Google Scholar 

  • Fu X, Pace P, Aloi G et al (2020) Topology optimization against cascading failures on wireless sensor networks using a memetic algorithm. Comput Netw 177:107327

    Google Scholar 

  • Gaume E, Livet M, Desbordes M, Villeneuve J-P (2004) Hydrological analysis of the river Aude, France, flash flood on 12 and 13 November 1999. J Hydrol 286:135–154. https://doi.org/10.1016/j.jhydrol.2003.09.015

    Article  Google Scholar 

  • Goetz JN, Brenning A, Petschko H, Leopold P (2015) Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling. Comput Geosci 81:1–11

    Google Scholar 

  • Gu Y, Brown JF, Verdin JP, Wardlow B (2007) A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophys Res Lett. https://doi.org/10.1029/2006GL029127

    Article  Google Scholar 

  • Guardiola-Albert C, Díez-Herrero A, Amerigo Cuervo-Arango M et al (2020) Analysing flash flood risk perception through a geostatistical approach in the village of Navaluenga, Central Spain. J Flood Risk Manag 13:e12590. https://doi.org/10.1111/jfr3.12590

    Article  Google Scholar 

  • Hartnett M, Nash S (2017) High-resolution flood modeling of urban areas using MSN_flood. Water Sci Eng 10:175–183. https://doi.org/10.1016/j.wse.2017.10.003

    Article  Google Scholar 

  • Hegger DLT, Mees HLP, Driessen PPJ, Runhaar HAC (2017) The roles of residents in climate adaptation: a systematic review in the case of the Netherlands. Environ Policy Gov 27:336–350. https://doi.org/10.1002/eet.1766

    Article  Google Scholar 

  • Hens L, Thinh NA, Hanh TH et al (2018) Sea-level rise and resilience in Vietnam and the Asia-Pacific: a synthesis. Vietnam J Earth Sci 40:126–152. https://doi.org/10.15625/0866-7187/40/2/11107

    Article  Google Scholar 

  • Holland JH (1992) Genetic algorithms. Sci Am 267:66–73

    Google Scholar 

  • Horton RE (1932) Drainage-basin characteristics. EOS Trans Am Geophys Union 13:350–361. https://doi.org/10.1029/TR013i001p00350

    Article  Google Scholar 

  • Intriligator MD (2002) Mathematical optimization and economic theory. Society for Industrial and Applied Mathematics, Philadelphia

    Google Scholar 

  • Islam ARMT, Saha A, Ghose B et al (2021) Landslide susceptibility modeling in a complex mountainous region of Sikkim Himalaya using new hybrid data mining approach. Geocarto Int 25:1–26

    Google Scholar 

  • Kalantar B, Pradhan B, Naghibi SA et al (2018) Assessment of the effects of training data selection on the landslide susceptibility mapping: a comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN). Geomat Nat Haz Risk 9:49–69

    Google Scholar 

  • Kanani-Sadat Y, Arabsheibani R, Karimipour F, Nasseri M (2019) A new approach to flood susceptibility assessment in data-scarce and ungauged regions based on GIS-based hybrid multi criteria decision-making method. J Hydrol 572:17–31. https://doi.org/10.1016/j.jhydrol.2019.02.034

    Article  Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95 - International Conference on Neural Networks. pp 1942–1948 vol.4

  • Khosravi K, Pourghasemi HR, Chapi K, Bahri M (2016) Flash flood susceptibility analysis and its mapping using different bivariate models in Iran: a comparison between Shannon’s entropy, statistical index, and weighting factor models. Environ Monit Assess 188:656. https://doi.org/10.1007/s10661-016-5665-9

    Article  Google Scholar 

  • Khosravi K, Pham BT, Chapi K et al (2018) A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Sci Total Environ 627:744–755. https://doi.org/10.1016/j.scitotenv.2018.01.266

    Article  Google Scholar 

  • Khosravi K, Shahabi H, Pham BT et al (2019) A comparative assessment of flood susceptibility modeling using multi-criteria decision-making analysis and machine learning methods. J Hydrol 573:311–323. https://doi.org/10.1016/j.jhydrol.2019.03.073

    Article  Google Scholar 

  • Li D, Simske S, Li D, Simske S (2010) Example based single-frame image super-resolution by support vector regression. J Pattern Recognit Res. https://doi.org/10.13176/11.253

    Article  Google Scholar 

  • Lovat A, Vincendon B, Ducrocq V (2019) Assessing the impact of resolution and soil datasets on flash-flood modelling. Hydrol Earth Syst Sci 23:1801–1818. https://doi.org/10.5194/hess-23-1801-2019

    Article  Google Scholar 

  • Łukasik S, Kowalski PA, Charytanowicz M, Kulczycki P (2017) Data clustering with grasshopper optimization algorithm. In: 2017 Federated Conference on Computer Science and Information Systems (FedCSIS), pp 71–74

  • Luo J, Chen H, Zhang Q et al (2018) An improved grasshopper optimization algorithm with application to financial stress prediction. Appl Math Model 64:654–668

    Google Scholar 

  • Luu C, Von Meding J, Kanjanabootra S (2018) Assessing flood hazard using flood marks and analytic hierarchy process approach: a case study for the 2013 flood event in Quang Nam, Vietnam. Nat Hazards 90:1031–1050. https://doi.org/10.1007/s11069-017-3083-0

    Article  Google Scholar 

  • Luu C, Pham BT, Phong TV et al (2021) GIS-based ensemble computational models for flood susceptibility prediction in the Quang Binh Province, Vietnam. J Hydrol 599:126500. https://doi.org/10.1016/j.jhydrol.2021.126500

    Article  Google Scholar 

  • Malik S, Pal SC (2021) Potential flood frequency analysis and susceptibility mapping using CMIP5 of MIROC5 and HEC-RAS model: a case study of lower Dwarkeswar River, Eastern India. SN Appl Sci 3:31. https://doi.org/10.1007/s42452-020-04104-z

    Article  Google Scholar 

  • Malik S, Chandra Pal S, Chowdhuri I et al (2020) Prediction of highly flood prone areas by GIS based heuristic and statistical model in a monsoon dominated region of Bengal Basin. Remote Sens Appl: Soc Environ 19:100343. https://doi.org/10.1016/j.rsase.2020.100343

    Article  Google Scholar 

  • Malik A, Tikhamarine Y, Sammen SS et al (2021) Prediction of meteorological drought by using hybrid support vector regression optimized with HHO versus PSO algorithms. Environ Sci Pollut Res 28:39139–39158. https://doi.org/10.1007/s11356-021-13445-0

    Article  Google Scholar 

  • Marler RT, Arora JS (2004) Survey of multi-objective optimization methods for engineering. Struct Multidisc Optim 26:369–395

    Google Scholar 

  • Mehrabi M, Pradhan B, Moayedi H, Alamri A (2020) Optimizing an adaptive neuro-fuzzy inference system for spatial prediction of landslide susceptibility using four state-of-the-art metaheuristic techniques. Sensors 20:1723

    Google Scholar 

  • Mirjalili SZ, Mirjalili S, Saremi S et al (2018a) Grasshopper optimization algorithm for multi-objective optimization problems. Appl Intell 48:805–820

    Google Scholar 

  • Mirjalili SZ, Mirjalili S, Saremi S et al (2018b) Grasshopper optimization algorithm for multi-objective optimization problems. Appl Intell. https://doi.org/10.1007/s10489-017-1019-8

    Article  Google Scholar 

  • Mondal B, Mistri D (2015) Analysis of hydrological inferences through morphometric analysis: a remote sensing-GIS based study of Gandheswari River Basin in Bankura District, West Bengal. Int J Hum Soc Sci Stud 2(4):68–80

    Google Scholar 

  • Mosavi A, Golshan M, Janizadeh S et al (2020) Ensemble models of GLM, FDA, MARS, and RF for flood and erosion susceptibility mapping: a priority assessment of sub-basins. Geocarto Int. https://doi.org/10.1080/10106049.2020.1829101

    Article  Google Scholar 

  • Ngo P-TT, Pham TD, Nhu V-H et al (2021) A novel hybrid quantum-PSO and credal decision tree ensemble for tropical cyclone induced flash flood susceptibility mapping with geospatial data. J Hydrol 596:125682. https://doi.org/10.1016/j.jhydrol.2020.125682

    Article  Google Scholar 

  • Pal I, Tularug P, Jana SK, Pal DK (2018) Risk assessment and reduction measures in landslide and flash flood-prone areas: a case of southern Thailand (Nakhon si Thammarat province). Integrating disaster science and management. Elsevier, pp 295–308

    Google Scholar 

  • Panahi M, Gayen A, Pourghasemi HR et al (2020) Spatial prediction of landslide susceptibility using hybrid support vector regression (SVR) and the adaptive neuro-fuzzy inference system (ANFIS) with various metaheuristic algorithms. Sci Total Environ 741:139937. https://doi.org/10.1016/j.scitotenv.2020.139937

    Article  Google Scholar 

  • Panahi M, Rahmati O, Rezaie F et al (2022) Application of the group method of data handling (GMDH) approach for landslide susceptibility zonation using readily available spatial covariates. CATENA 208:105779

    Google Scholar 

  • Paul GC, Saha S, Hembram TK (2019) Application of the GIS-based probabilistic models for mapping the flood susceptibility in Bansloi sub-basin of Ganga-Bhagirathi River and their comparison. Remote Sens Earth Syst Sci 2:120–146. https://doi.org/10.1007/s41976-019-00018-6

    Article  Google Scholar 

  • Peduzzi P (2017) Prioritizing protection? Nature Clim Chang 7:625–626. https://doi.org/10.1038/nclimate3362

    Article  Google Scholar 

  • Pham BT, Jaafari A, Phong TV et al (2021a) Improved flood susceptibility mapping using a best first decision tree integrated with ensemble learning techniques. Geosci Front 12:101105. https://doi.org/10.1016/j.gsf.2020.11.003

    Article  Google Scholar 

  • Pham BT, Luu C, Phong TV et al (2021b) Can deep learning algorithms outperform benchmark machine learning algorithms in flood susceptibility modeling? J Hydrol 592:125615. https://doi.org/10.1016/j.jhydrol.2020.125615

    Article  Google Scholar 

  • Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization. Swarm Intell 1:33–57

    Google Scholar 

  • Pradhan B (2013) A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput Geosci 51:350–365. https://doi.org/10.1016/j.cageo.2012.08.023

    Article  Google Scholar 

  • Ragab R, Bromley J, Rosier P et al (2003) Experimental study of water fluxes in a residential area: 1. Rainfall, roof runoff and evaporation: the effect of slope and aspect. Hydrol Process 17:2409–2422. https://doi.org/10.1002/hyp.1250

    Article  Google Scholar 

  • Rahman S, Hazim O (1996) Load forecasting for multiple sites: development of an expert system-based technique. Electr Power Syst Res 39:161–169

    Google Scholar 

  • Rahmati O, Pourghasemi HR, Zeinivand H (2016) Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province, Iran. Geocarto Int 31:42–70. https://doi.org/10.1080/10106049.2015.1041559

    Article  Google Scholar 

  • Rana S, Jasola S, Kumar R (2011) A review on particle swarm optimization algorithms and their applications to data clustering. Artif Intell Rev 35:211–222

    Google Scholar 

  • Rizeei HM, Pradhan B, Saharkhiz MA (2019) An integrated fluvial and flash pluvial model using 2D high-resolution sub-grid and particle swarm optimization-based random forest approaches in GIS. Complex Intell Syst 5:283–302

    Google Scholar 

  • Roy P, Chandra Pal S, Chakrabortty R et al (2020) Threats of climate and land use change on future flood susceptibility. J Clean Prod 272:122757. https://doi.org/10.1016/j.jclepro.2020.122757

    Article  Google Scholar 

  • Saha A, Pal SC, Arabameri A et al (2021a) Flood susceptibility assessment using novel ensemble of hyperpipes and support vector regression algorithms. Water 13:241. https://doi.org/10.3390/w13020241

    Article  Google Scholar 

  • Saha A, Pal SC, Arabameri A et al (2021b) Optimization modelling to establish false measures implemented with ex-situ plant species to control gully erosion in a monsoon-dominated region with novel in-situ measurements. J Environ Manag 287:112284. https://doi.org/10.1016/j.jenvman.2021.112284

    Article  Google Scholar 

  • Saha A, Pal SC, Santosh M et al (2021c) Modelling multi-hazard threats to cultural heritage sites and environmental sustainability: the present and future scenarios. J Clean Product 320:128713

    Google Scholar 

  • Sahoo A, Samantaray S, Paul S (2021) Efficacy of ANFIS-GOA technique in flood prediction: a case study of Mahanadi river basin in India. H2Open J 4:137–156. https://doi.org/10.2166/h2oj.2021.090

    Article  Google Scholar 

  • Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47

    Google Scholar 

  • Scheuer S, Haase D, Meyer V (2011) Exploring multicriteria flood vulnerability by integrating economic, social and ecological dimensions of flood risk and coping capacity: from a starting point view towards an end point view of vulnerability. Nat Hazards 58:731–751. https://doi.org/10.1007/s11069-010-9666-7

    Article  Google Scholar 

  • Sekac T, Jana SK, Pal DK (2015) A remote sensing and GIS approach to assessing multiple environmental factors leading to delineation of flood hazard risk zone in the Busu River catchment, Morobe Province, Papua New Guinea. Melanes J Geomat Prop Stud 1:40–55

    Google Scholar 

  • Sharp T (2020) An introduction to support vector regression (SVR). In: Medium. https://towardsdatascience.com/an-introduction-to-support-vector-regression-svr-a3ebc1672c2. Accessed 2 Apr 2021

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res: Atmos 106:7183–7192. https://doi.org/10.1029/2000JD900719

    Article  Google Scholar 

  • Tehrany MS, Pradhan B, Mansor S, Ahmad N (2015) Flood susceptibility assessment using GIS-based support vector machine model with different kernel types. CATENA 125:91–101. https://doi.org/10.1016/j.catena.2014.10.017

    Article  Google Scholar 

  • Tharwat A, Houssein EH, Ahmed MM et al (2018) MOGOA algorithm for constrained and unconstrained multi-objective optimization problems. Appl Intell 48:2268–2283

    Google Scholar 

  • Tien Bui D, Hoang N-D, Pham T-D et al (2019) A new intelligence approach based on GIS-based multivariate adaptive regression splines and metaheuristic optimization for predicting flash flood susceptible areas at high-frequency tropical typhoon area. J Hydrol 575:314–326. https://doi.org/10.1016/j.jhydrol.2019.05.046

    Article  Google Scholar 

  • Tien Bui D, Hoang N-D, Martínez-Álvarez F et al (2020) A novel deep learning neural network approach for predicting flash flood susceptibility: a case study at a high frequency tropical storm area. Sci Total Environ 701:134413. https://doi.org/10.1016/j.scitotenv.2019.134413

    Article  Google Scholar 

  • Towfiqul Islam ARM, Talukdar S, Mahato S et al (2021) Flood susceptibility modelling using advanced ensemble machine learning models. Geosci Front 12:101075. https://doi.org/10.1016/j.gsf.2020.09.006

    Article  Google Scholar 

  • Twele A, Cao W, Plank S, Martinis S (2016) Sentinel-1-based flood mapping: a fully automated processing chain. Int J Remote Sens 37:2990–3004. https://doi.org/10.1080/01431161.2016.1192304

    Article  Google Scholar 

  • Vapnik VN (1999) An overview of statistical learning theory. IEEE Trans Neural Netw 10:988–999

    Google Scholar 

  • Varu J, Sekac T, Jana SK (2020) Flood hazard micro zonation from a geomatic perspective on Vitilevu Island, Fiji. Int J Geoinform 16:37–47

    Google Scholar 

  • Viera AJ, Garrett JM (2005) Understanding interobserver agreement: the Kappa statistic. Fam Med 37(5):360–363

    Google Scholar 

  • Wasko C, Sharma A (2017) Global assessment of flood and storm extremes with increased temperatures. Sci Rep 7:7945. https://doi.org/10.1038/s41598-017-08481-1

    Article  Google Scholar 

  • Wheater HS, Jakeman AJ, Beven KJ (1993) Progress and directions in rainfall-runoff modelling

  • Wu J, Liu H, Wei G et al (2019) Flash flood forecasting using support vector regression model in a small mountainous catchment. Water 11:1327. https://doi.org/10.3390/w11071327

    Article  Google Scholar 

  • Xiong J, Li J, Cheng W et al (2019) A GIS-based support vector machine model for flash flood vulnerability assessment and mapping in China. ISPRS Int J Geo Inf 8:297. https://doi.org/10.3390/ijgi8070297

    Article  Google Scholar 

  • Yang X-S (2010) Nature-inspired metaheuristic algorithms. Luniver Press

    Google Scholar 

  • Youssef AM, Pradhan B, Sefry SA (2015) Flash flood susceptibility assessment in Jeddah city (Kingdom of Saudi Arabia) using bivariate and multivariate statistical models. Environ Earth Sci 75:12. https://doi.org/10.1007/s12665-015-4830-8

    Article  Google Scholar 

  • Yuan X, Chen C, Yuan Y et al (2015) Short-term wind power prediction based on LSSVM–GSA model. Energy Convers Manag 101:393–401. https://doi.org/10.1016/j.enconman.2015.05.065

    Article  Google Scholar 

  • Yuan X, Chen C, Lei X et al (2018) Monthly runoff forecasting based on LSTM–ALO model. Stoch Env Res Risk Assess 32:2199–2212

    Google Scholar 

  • Zhang Z, Hong W-C (2019) Electric load forecasting by complete ensemble empirical mode decomposition adaptive noise and support vector regression with quantum-based dragonfly algorithm. Nonlinear Dyn 98:1107–1136

    Google Scholar 

  • Zhao G, Pang B, Xu Z et al (2018) Mapping flood susceptibility in mountainous areas on a national scale in China. Sci Total Environ 615:1133–1142. https://doi.org/10.1016/j.scitotenv.2017.10.037

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subodh Chandra Pal.

Ethics declarations

Conflict of interest

All the authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of a Topical Collection in Environmental Earth Sciences on Recent Advances in Environmental Sustainability, guest edited by Peiyue Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruidas, D., Chakrabortty, R., Islam, A.R.M.T. et al. A novel hybrid of meta-optimization approach for flash flood-susceptibility assessment in a monsoon-dominated watershed, Eastern India. Environ Earth Sci 81, 145 (2022). https://doi.org/10.1007/s12665-022-10269-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-022-10269-0

Keywords

Navigation