Skip to main content
Log in

Martensitic Transformation and Magnetic Properties of Ni57Fe18Ga25 Shape Memory Alloy Subjected to Severe Plastic Deformation

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The effects of severe plastic deformation (SPD) process via high-speed high-pressure torsion technique on martensitic transformation of Ni–Fe–Ga Heusler shape memory alloy are the subject of this work. The results show that moderate degrees of deformation lead to a decrease in the martensitic transformation temperatures, while the heat of reaction is enhanced only for the sample processed with the lowest degree of deformation. The results are explained by the interplay between the constituent tetragonal L10 and the cubic gamma crystal structures and the evolution of the samples morphology with the severity of deformation. The reduction in the samples granulation due to the progressive increase in the SPD is reflected by the magnetic properties of the samples with decreasing coercivity and Curie temperatures. At the highest applied degree of deformation, sample nanostructuring and a possible amorphization might explain the vanishing of MT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Petrini L, Migliavacca F, J Metallurgy 2011 (2011), 501483.

  2. Morgan N B, Materials Science and Engineering A 378 (2004), 16-23.

    Article  Google Scholar 

  3. Songa G, Maa N, Lib H-N, Engineering Structures 28 (2006) 1266–1274.

    Article  Google Scholar 

  4. Nespoli A, Besseghini S, Pittaccio S, Villa E, Viscuso S, Sensors and Actuators A158 (2010) 149–160.

    Article  CAS  Google Scholar 

  5. Furuya Y, Shimada H, Materials & Design 12 (1991) 21-28.

    Article  Google Scholar 

  6. Van Humbeeck J, Materials Science and Engineering A 273–275 (1999) 134–148.

    Article  Google Scholar 

  7. Bahador A, Hamzah E, Kondoh K, Asma Abubakar T, Yusof F, Umeda J, Saud S N, Ibrahim M K, Trans Nonferrous Met Soc China (English Ed.) 28 (2018), 502–514.

    Article  CAS  Google Scholar 

  8. Frolova L, Mino J, Ryba T, Gamcova J, Dzubinska A, Reiers M, Diko P, Kavecansky V, Milkovic O, Kravcak J, J Alloys Comp 747 (2018), 21–25.

    Article  CAS  Google Scholar 

  9. Caputo M P, Berkowitz A E, Armstrong A, Müllner P, Solomon C.V, Addit Manuf 21 (2018), 579–588.

    CAS  Google Scholar 

  10. Otsuka K, Wayman C M, Shape memory materials, Cambridge University Press (1998).

    Google Scholar 

  11. Graf T, Felser C, Parkin Stuart S P, Progress in Solid State Chemistry 39 (2011) 1-50.

    Article  CAS  Google Scholar 

  12. Sofronie M, Tolea F, Kuncser V, Valeanu M, J App Phys 107 (2010), 113905.

    Article  Google Scholar 

  13. Tolea F, Sofronie M, Crisan A D, Enculescu M, Kuncser V, Valeanu M, J Alloys Comp 650 (2015), 664-670.

    Article  CAS  Google Scholar 

  14. Ullakko K, Huang J K, Kantner C, O’Handley R C, Kokorin V V, Appl Phys Lett 69 (1996), 1966.

  15. Liu J, Xie H, Huo Y, Zheng H, and Li J, J Alloys Comp 420 (2006) 145–157.

    Article  CAS  Google Scholar 

  16. Yang S Y, Liu Y D, Wang C P, Lu Y, Wang J M, Shi Z, Liu X J, J Alloys Comp 619 (2015) 498–504.

    Article  CAS  Google Scholar 

  17. Chernenko V A, Barandiarán J M, L’Vov V A, Gutiérrez J, Lázpita P, and Orue I, J Alloys Comp 577 (2013) S305–S308.

    Article  CAS  Google Scholar 

  18. Oikawa K, Ota Y, Ohmori T, Tanaka Y, Morito H, Kainuma R, Fukamichi K, Ishida K, Appl Phys Lett 81 (2002) 5201.

    Article  CAS  Google Scholar 

  19. Santamarta R, Font J, Muntasell J, Masdeu F, Pons J, Cesari E, Dutkiewicz J, Scr Mater 54 (2006) 1105.

    Article  CAS  Google Scholar 

  20. Alvarado-Hernández F, Soto-Parra D E, Ochoa-Gamboa R, Castillo-Villa P O, Flores-Zúňiga H, Ríos-Jara D, J Alloys Comp 426 (2008) 442.

    Article  Google Scholar 

  21. Biswas A, Singh G, Sarkar S K, Krishnan M, and Ramamurty U, Intermetallics 54 (2014) 69–78.

    Article  CAS  Google Scholar 

  22. Pons J, Cesari E, Seguí C, Masdeu F, Santamarta R, Mater Sci Eng A 481482 (2008) 57–65.

    Article  Google Scholar 

  23. Khovaylo V V, Buchelnikov V D, Kainuma R, Koledov V V, Ohtsuka M, Shavrov V G, Phys Rev B 72 (2005) 224408.

    Article  Google Scholar 

  24. Ishida K, Appl Phys Lett 81 (2002) 5201–5203.

    Article  Google Scholar 

  25. Sofronie M, Tolea F, Kuncser V, and Valeanu M, J of Appl Phys 107 (2010) 113905.

  26. Liu J, Scheerbaum N, Hinz D, Gutfleisch O, Acta Mat 56 (2008) 3177.

    Article  CAS  Google Scholar 

  27. Qian J F, Liu E K, Feng L, Zhu W, Li G J, Wang W H, Wu G H, Du Z W, Fu X, Appl Phys Lett 99 (2011) 252504.

    Article  Google Scholar 

  28. Hamilton R F, Efstathiou C, Sehitoglu H, Chumlyakov Y, Scripta Mat 54 (2006) 465-469.

    Article  CAS  Google Scholar 

  29. Gurǎu G, Gurǎu C, Potecaşu O, Alexandru P, Bujoreanu L G, J Mater Eng Perform 23 (2014) 2396–2402.

    Article  Google Scholar 

  30. Tohidi A A, Ketabchi M, Hasannia A, Mater Sci Eng A 577 (2013) 43.

    Article  CAS  Google Scholar 

  31. Panigrahi A, Sulkowski B, and Waitz T, J Mech Behavior Biomed Mater 62 (2016) 93-105.

    Article  CAS  Google Scholar 

  32. Gurǎu G, Gurǎu C, Tolea F, Sampath V, MATERIALS 12 (2019) 1939.

    Article  Google Scholar 

  33. An X H, Lin Q Y, Gang Sha, Huang M X, Acta Mater 109 (2016) 300.

    Article  CAS  Google Scholar 

  34. Atli K C, Karaman I, Noebe R D, Garg A, Chumlyakov Y I, Kireeva I V, Acta Mater 59 (2011) 4747–4760.

    Article  CAS  Google Scholar 

  35. Atli K C, Karaman I, Noebec R D and Maier H J, Scripta Mater 64 (2011) 315–318.

    Article  CAS  Google Scholar 

  36. Gurǎu G, Gurǎu C, Sampath V, MATEC Web Conf 33 (2015) 03003.

    Article  Google Scholar 

  37. Gurǎu G, Gurǎu C, Bujoreanu L G, Sampath V, In: IOP Conf Ser Mater Sci Eng 209 (2017), 012036.

  38. Bagherpour E, Qods F, Ebrahimi R, Miyamoto H, Mater Sci Eng A 666 (2016) 324–338.

    Article  CAS  Google Scholar 

  39. Waitz T, Antretter T, Fischer F D, Simha N K, Karnthaler H P, J Mech Phys Solids 55 (2007) 419–444.

    Article  CAS  Google Scholar 

  40. Picornell C, Pons J, Cesari E, Dutkiewicz J, Intermetallics 16 (2008) 751.

    Article  CAS  Google Scholar 

  41. Tolea F, Sofronie M, Crisan A D, Enculescu M, Kuncser V, Valeanu M, J All Com 650 (2015) 664-670.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of the Romanian Ministry of Education and Research (CPN-III-P2-2.1-PED-2019, Contract 324PED/2020 and Contract 493PED/2020, also Core Program PN030101 21N/2019) is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Tolea.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popescu, B., Gurau, C., Gurau, G. et al. Martensitic Transformation and Magnetic Properties of Ni57Fe18Ga25 Shape Memory Alloy Subjected to Severe Plastic Deformation. Trans Indian Inst Met 74, 2491–2498 (2021). https://doi.org/10.1007/s12666-021-02293-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02293-8

Keywords

Navigation