Skip to main content

Advertisement

Log in

Mechanical Properties and Microstructure Evolution Of AA6082/Sic Nanocomposite Processed by Multi-Pass FSP

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In this investigation, homogenously disseminated SiC reinforcement particles and a fine-grained structure was accomplished by multi-pass friction stir processing (MPFSP) of AA6082. The results revealed that refined grain structures with predominant high-angle grain boundaries were made in the stir zone in the 5th pass FSP due to severe plastic deformation and dynamic recrystallization. The MPFSP observed material flow around the cluster’s redistribution. At increased SiC concentration, the microstructure and electron backscatter diffraction (EBSD) examinations demonstrated that SiC reinforcement particles strongly inhibited grain boundary migration, resulting in an incessant decrease in grain size. The tensile properties and microstructure of the MPFSP/SiC were enhanced by employing a rotational tool speed (RTS) of 1450 rev/min, welding speed (WS) of 85 mm-min-1 with a tilt angle of 2°. The reinforcement particles were homogenously disseminated in the 5P FSP. The base metal AA6082's tensile strength was 219 ± 5 MPa with a % strain of 24.8 ± 0.3. After MPFSP/SiC on AA6082, the tensile strength was increased as the FSP pass increased. The higher tensile strength (298 ± 8 MPa) was observed at the 5P FSP, caused by fine grains during the dynamic recrystallization mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

I 0 :

9.66 × 1034 S/m3

R :

8.314 J/K/mol

Q d :

130KJ/mol

A 0 :

Energy barrier for nucleation (16.22 kJ/mol)

r :

Particle radius

C p :

Concentration of element

C i :

Concentration of solute

Q d :

130 KJ/mol

\(\overline{C }\) :

Mean solute content in the matrix

C e :

Equilibrium solute content in the matrix

\(\overline{r }\) :

Mean particle radius

M :

3.1 (Taylor factor)

b :

2.84 × 1010

Vm:

3.95 × 10–5 M3/mol

\(\gamma\) :

Particle interface energy (0.2)

D :

Diffusion coefficient

F i :

Particle radius’ function

r i :

Particle radius

N i :

Density number of the particles

C Si :

Scaling factor of Si

f :

Volume fraction

G :

2.7 × 10–10 N/m3

\(\beta\) :

Dissolution line tension (0.36)

C Mg :

Scaling factor of Mg

k Si :

Concentration of Si

k Mg :

Concentration of Mg

k Cu :

Concentration of Cu

C Cu :

Scaling factor of Cu

R c :

Critical radius

P d :

Driving pressure

D :

Volume fraction of 2nd phase particles

P zp :

Zener pinning pressure

R g :

Grains radius

M b :

Mobility of boundary

R P :

Radius of 2nd phase particle

g c :

Geometrical constant

k :

Material constant

b :

Burgers vector

V f :

Volume fraction of 2nd phase particle

Δ \({\sigma }_{\mathrm{OR}}\) :

Orowan–Ashby equation,

\(\lambda\) :

Effective inter-particle spacing,

v :

Poisson’s ratio

T :

Temperature

References

  1. X. Zhang, S.F. Li, D. Pan, B. Pan, K. Kondoh, Compos. Appl. Sci. Manuf. 105 (2018) 87.

    Article  CAS  Google Scholar 

  2. Husain Mehdi, RS Mishra, Defence Technology, 17 (3), (2021), 715.

    Article  Google Scholar 

  3. Khodabakhshi, F., Nosko, M., Gerlich, A.P., 2018, Surf. Coat. Technol. 335, 288.

    Article  CAS  Google Scholar 

  4. Dolatkhah, A., Golbabaei. P., Givi, M.K.B, Molaiekiya, F., 2012, Mater. Des. 37, 458.

    Article  CAS  Google Scholar 

  5. Sharifitabar, M., Sarani, A., Khorshahian, S., Shafiee, A. M., 2011, Mater. Des. 32, 4164.

    Article  CAS  Google Scholar 

  6. Shivraman Thapliyal Dheerendra Kumar Dwivedi, Journal of Materials Processing Technology; 2016: 238, 30.

  7. Shivraman Thapliyal & Dheerendra Kumar Dwivedi (2018), Materials Science and Technology. 2018; 34(3):366

  8. Barmouz M, Asadi P, Besharati Givi MK, Taherishargh M, Sci Eng A 2011;528:1740.

    Article  CAS  Google Scholar 

  9. Alidokht SA, Abdollah-zadeh A, Soleymani S, Assadi H., Mater Des 2011;32:2727.

    Article  CAS  Google Scholar 

  10. Sharifitabar M, Sarani A, Khorshahian S, Shafiee Afarani M. Mater Des 2011;32:4164

    Article  CAS  Google Scholar 

  11. Barmouz M, Besharati Givi MK, Composites Part A 2011;42:1445.

    Article  CAS  Google Scholar 

  12. Feng AH, Xiao BL, Ma ZY. Compos Sci Technol 2008;68:2141.

    Article  CAS  Google Scholar 

  13. Uzun H. Mater Des 2007;28:1440.

    Article  CAS  Google Scholar 

  14. Husain Mehdi, R.S.Mishra, Journal of Materials: Design and Application, 235(11), 2021, 2531. https://doi.org/10.1177/14644207211007882.

  15. Husain Mehdi, R.S. Mishra, Journal of Material Engineering and Performance 30, 1926 (2021)

  16. Husain Mehdi, R.S. Mishra, Transactions of the Indian Institute of Metals, 73, 1773 (2020),

  17. Husain Mehdi, R.S. Mishra, Metallography, Microstructure, and Analysis, 9, 403 (2020). https://doi.org/10.1007/s13632-020-00640-7

  18. Husain Mehdi, R.S Mishra, Advances in Materials and Processing Technologies. https://doi.org/10.1080/2374068X.2020.1829952.

  19. Wang, W., Shi, Q.Y., Liu, P., Li, H.K., Li, T., 2009. J. Mater. Proc. Technol. 209(4), 2099.

    Article  CAS  Google Scholar 

  20. Mahmoud, E.R.I., Ikeuchi, K., Takahashi, M., 2008. Sci. Technol. Weld. Join. 13(7), 607.

    Article  CAS  Google Scholar 

  21. Mishra, R.S., Ma, Z.Y., Charit, I., 2003. Mater. Sci. Eng. A 341(1–2), 307.

    Article  Google Scholar 

  22. Narimani M, Lotfi B, Sadeghian Z. Mater Sci Eng A 2016; 673: 462.

    Article  CAS  Google Scholar 

  23. Sun K, Shi QY, Sun YJ, et al.. Mater Sci Eng A 2012; 547: 32.

    Article  CAS  Google Scholar 

  24. Marzoli L M, Strombeck A V, Dos Santos J F, Gambaro C, and Volpone L M, Compos Sci Technol 66 (2006) 363.

    Article  CAS  Google Scholar 

  25. Amirizad M, Kokabi A H, Gharacheh M A, Sarrafi R, Shalchi B, and Azizieh M, Mater Lett 60 (2006) 565.

    Article  CAS  Google Scholar 

  26. Chen X G, Silva M D, Gougeon P, and St-Georges L, Mater Sci Eng A 518 (2009) 174.

    Article  CAS  Google Scholar 

  27. Vijay S J, and Murugan N, Mater Des 31 (2010) 3585.

    Article  CAS  Google Scholar 

  28. Nami H, Adgi H, Sharifitabar M, and Shamabadi H, Mater Des 32 (2010) 976.

    Article  CAS  Google Scholar 

  29. Gopalakrishnan S, and Murugan N, Mater Des 32 (2011) 462.

    Article  CAS  Google Scholar 

  30. H.A. Deore, J. Mishra, A.G. Rao, H. Mehtani, V.D. Surf. Coat. Technol 374 (2019) 52.

    Article  CAS  Google Scholar 

  31. Z.Y.Zhanga, R. Yang, Y.Lia, G.Chena, Y.T.Zhao, M.P.Liu, Journal of Alloys and Compounds, 762, 312, 2018.

    Article  CAS  Google Scholar 

  32. Yuming Xie, Xiangchen Meng, Yulong Li, Dongxin Mao, Long Wan, Yongxian Huang, Composites Communications 26 (2021) 100776.

  33. Y. Xie, Y. Huang, F. Wang, X. Meng, J. Li, Z. Dong, J. Cao, Journal of Alloys and Compounds (2020), https://doi.org/10.1016/j.jallcom.2020.153741.

    Article  Google Scholar 

  34. Husain Mehdi, R.S. Mishra, Journal of Adhesion Science and Technology, https://doi.org/10.1080/01694243.2021.1964846.

  35. Jiang J, Xiao G, Che C, Wang Y. Metals. 2018; 8(6):460.

    Article  CAS  Google Scholar 

  36. Kumar, N., Gautam, G., Gautam, R. K., Mohan, A., and Mohan, S., 2016, “Tribol. Int., 97, pp. 313.

    Article  CAS  Google Scholar 

  37. Zapata-Solvas, E., Jayaseelan, D., Lin, H.-T., Brown, P., and Lee, W., 2013, J. Eur. Ceram. Soc., 33(7), pp. 1373.

  38. El-Rayes, M.M., El-Danaf, E., 2012. J Mater Process Tech. 212, 1157.

    Article  CAS  Google Scholar 

  39. A. Sharma, V.M. Sharma, S. Mewar, S.K. Pal, J. Paul, Friction stir processing of Al6061-SiC-graphite hybrid surface composites, Mater. Manuf. Process. 33 (7) (2018) 795.

    Article  CAS  Google Scholar 

  40. M. Paidar M, O.O. Ojo, H.R. Ezatpour, A. Heidarzadeh, Surf. Coating. Technol. 361 (2019) 159.

  41. C. I. Chang, C. J. Lee, J. C. Huang, Scripta Mater. 51 (2004) 509.

    Article  CAS  Google Scholar 

  42. Rathee S, Maheshwari S, Siddiquee AN, Srivastava M (2017) Materials Today: Proceedings 4(2, Part A):452.

  43. P. Su, A. Gerlich, T. H. North, and G. J. Bendzsak, Science and Technology of Welding and Joining, vol. 11, no. 1, pp. 61, 2013.

  44. Srivastava, M., Rathee, S., Siddiquee, A.N. et al.. Silicon 11, 2149 (2019).

    Article  CAS  Google Scholar 

  45. O.P. Oladijo, A.M. Venter, L.A. Cornish, N. Sacks, Surf. Coat. Techno., 2012, 206, p4725.

  46. Z.Zhang, D.L.Chen, Scripta Materialia 54, (7), 2006, p1321.

  47. Moslem Paidar, Olatunji Oladimeji Ojo, Hamid Reza Ezatpour, Surface & Coatings Technology 361 (2019) 159.

    Article  CAS  Google Scholar 

  48. Simar A, Brechet Y, Meester BD, Denquin A, Gallais C, and Pardoen T, Prog Mater Sci 2012; 57: 95.

    Article  CAS  Google Scholar 

  49. Zhang Z, Wan ZY, Lindgren LE, Tan ZJ, and Zhou X, J. Mater. Eng. Perform 2017; 26; 5731.

    Article  CAS  Google Scholar 

  50. Li, J.Y., Yao, X.X. & Zhang, Z.. J of Mater Eng and Perf 2020; 29: 6591.

    Article  CAS  Google Scholar 

  51. X.G. Chen, M.D. Silva, P. Gougeon, L.S. Georges, Mater. Sci. Eng. A 518 (12) (2009) 174.

    Article  CAS  Google Scholar 

  52. F.J. Humphreys, M. Hatherly, Elsevier Ltd., 2004, pp. 415.

  53. F.J. Humphreys, M. Hatherly, Elsevier Ltd., 2004, pp. 333

  54. Srivastava, M., Rathee, S., Siddiquee, A.N., 2019. Silicon. 11, 2149–2157.

    Article  CAS  Google Scholar 

  55. Zhang, Z., Chen, D.L., 2006. Scripta Mater. 54 (7), 1321-1326.

    Article  CAS  Google Scholar 

  56. M.M. Moradi, H.J. Aval, R. Jamaati, S. Amirkhanlou, S. Ji,. Manuf. Process. 32 (2018) 1.

    Article  Google Scholar 

  57. X.C. Liu, Y.F. Sun, T. Nagira, K. Ushioda, H. Fujii, J. Mater. Sci. Technol. 35 (2019) 1412.

    Article  CAS  Google Scholar 

  58. M. Barmouz, M.K. Besharati Givi, Compos. Part A Appl. Sci. Manuf. 42 (2011) 1445.

  59. R. Sathiskumar, N. Murugan, I. Dinaharan, S.J. Vijay, Mater. Charact. 84 (2013) 16.

    Article  CAS  Google Scholar 

  60. M. Barmouz, M.K. Besharati Givi, J. Seyfi, Mater. Charact. 62 (2011) 108.

  61. Hsu CJ, Chang Cy, Kao PW, et al.. Al-Al Acta Mater 2006; 54(19): 5241.

  62. Martin JW. Micromechanisms in particle hardened alloys. Cambridge University Press, Cambridge, 1980.

    Google Scholar 

  63. Jiang L, Yang H, Yee, JK, et al.. Acta Mater 2016; 103: 128.

    Article  CAS  Google Scholar 

  64. M. Barmouz, M.K. Besharati Givi, Compos. Part A 42 (10) (2011) 1445.

  65. J.Q. Su, T.W. Nelson, R. Mishra, M. Mahoney, Acta Mater. 51 (2003) 713.

    Article  CAS  Google Scholar 

  66. L.B. Johannes, R.S. Mishra, Mater. Sci. Eng., A 464 (1) (2007) 255.

  67. G.Q. Huang, J. Wu, W.T. Hou, L.H. Shah, A.R.H. Midawi, A.P. Gerlich, Y. F. Shen, F.Q. Meng, Materials Science & Engineering A, 806 (2021) 140831.

  68. M. Abbasi, M. Givi, A. Ramazani, Int. J. Adv. Manuf. Technol. 100 (2019) 1463.

    Article  Google Scholar 

  69. G. AzimiRoeen, S.F. Kashani-Bozorg, M. Nosko, S. Lotfian, Met. Mater. Int. (2019).

  70. F. Khodabakhshi, M. Haghshenas, J. Chen, B. Shalchi Amirkhiz, J. Li, A.P. Gerlich, Sci. Technol. Weld. Join. 22 (2017) 182.

  71. Middling, O.T., Oosterkamp, L.D., Bersaas, J., 1998. Int: Proc.7 Inter. conf. jt. alum., INALCO98.

  72. Paidar, M., Asgari, A., Ojo O.O., Saberi.A., 2018. J. Mater. Eng. Perfor. 27, 1714–1724.

  73. Sharma, D.K., Patel, V., Badheka, V., Mehta, K., Upadhyay, G., 2019. J. Tribolo. 141 (5), 52201.

    Article  CAS  Google Scholar 

  74. Tan YB, Wang XM, Ma M, Zhang JX, Liu WC, Fu RD, Xiang S. Mater Charact. 2017;127:41.

    Article  CAS  Google Scholar 

  75. Huang KT, Lui TS, Chen LH. J Alloys Compd. 2011;509(27):7466.

    Article  CAS  Google Scholar 

  76. S.S. Mirjavadi, M. Alipour, A.M.S. Hamouda, A. Matin, S. Kord, B.M. Afshari, P.G. Koppad, J. Alloys Compd. 726 (2017) 1262.

    Article  CAS  Google Scholar 

  77. Mirjavadi, S.S., Alipour, M., Hamouda, A.M.S., Matin, A., Kord, S., Afshari, B.M., Koppad, P.G., 2017. Alloys Compd. 726, 1262.

    Article  CAS  Google Scholar 

  78. Bodaghi, M., Dehghani, K., 2017. Int. J. Adv. Manuf. Technol. 88, 2651.

    Article  Google Scholar 

  79. Heidarzadeh, A., Barenji, R.V., Esmaily, M., Ilkhichi, A.R., 2015. Trans. Indian Inst. Met. 68, 757.

    Article  CAS  Google Scholar 

  80. Liu, H.J., Fujii, H., Maeda, M., Nogi, K., 2013. J Mat. Proc. Technol, 142, 692.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Husain Mehdi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashmi, A.W., Mehdi, H., Mishra, R.S. et al. Mechanical Properties and Microstructure Evolution Of AA6082/Sic Nanocomposite Processed by Multi-Pass FSP. Trans Indian Inst Met 75, 2077–2090 (2022). https://doi.org/10.1007/s12666-022-02582-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02582-w

Keywords

Navigation