Skip to main content

Advertisement

Log in

A Feasible Route to Produce 30 MPa Adhesion Strength of Electrochemically Deposited Hydroxyapatite (HA) on Titanium (Ti6Al4V) Alloy

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Ti6Al4V alloy, an α + β titanium alloy having good biocompatibility, low density, high strength and a better resistance to corrosion is an excellent candidate for bridges and implants. Hydroxyapatite (HA), a calcium phosphate (Ca10(PO4)6(OH)2) mineral having similar chemical composition with the hard tissues of human bones, was electrochemically deposited on Ti6Al4V alloy grade-5. The surface activity of substrate was increased by a uniform TiO2 film, achieved by grinding, polishing, pretreatment with anodization and alkali treatment. Electrochemical deposition was done by HA powder-ethanol suspension with an antibacterial binder called chitosan at set parameters of 20 V for 1 h at pH 4. The adhesion ability and polarization behavior of HA-coated Ti6Al4V alloy was observed. The anodized, HA-coated, and a bare substrate alloy samples were examined in a bio-simulated solution of ringer’s lactate for polarization testing. SEM and EDAX analysis were performed for HA powder and HA-deposited sample to observe the surface morphology with elemental compositions. Adhesion test (Shimadzu AGS X series tensile testing machine at 25 °C and 60% relative humidity) was performed to check the coating adhesiveness with the metallic substrate, and the observed value was upto 30 MPa. Herein, the electrochemical-deposited HA-coated samples were more resistant to dissolution and showed 2 times better corrosion resistance than bare metal. The bonding strength achieved in this work was also 30 MPa which is greater than required for tooth fixation and root implants (20 MPa).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brown S A and J E Lemons. Medical Applications of Titanium and Its Alloys: The Material and Biological Issues (1996).

  2. Williams D F. Biocompatibility of Clinical Implant Mtls. CRC-Press (1981).

  3. Long M, and Rack H J, Biomaterials 19 (1998) 1621.

    Article  CAS  Google Scholar 

  4. Fonseca C, and Barbosa M A, Corros Sci 43 (2001) 547.

    Article  CAS  Google Scholar 

  5. Chen Q, and Thouas G A, Mater Sci Eng R Rep 87 (2015) 1.

    Article  Google Scholar 

  6. Geetha M, Singh A K, Asokamani R, and Gogia A K Prog Mater Sci 54 (2009) 397

  7. Gepreel MA-H, and Niinomi M, J Mech Behav Biomed Mater 20 (2013) 407.

    Article  Google Scholar 

  8. Manivasagam G, Dhinasekaran D, and Rajamanickam A, Recent Patents Corros Sci 2 (2010) 1.

    Article  Google Scholar 

  9. Taddei E B, Henriques V A R, Silva C R M, and Cairo C A A, Mater Sci Eng C 24 (2004) 683.

    Article  Google Scholar 

  10. Nasab M B, Hassan M R, and Sahari B B, Trends Biomater Artif Organs 24 (2010) 69.

    Google Scholar 

  11. Patel N R, and Gohil P P, Int J Emerg Technol Adv Eng 2 (2012) 91.

    Google Scholar 

  12. Mu Y, Kobayashi T, Tsuji K, Sumita M, and Hanawa T, J Mater Sci Mater Med 13 (2002) 583.

    Article  CAS  Google Scholar 

  13. Thull, R. and M. Schaldach, Corrosion of highly stressed orthopedic joint replacements, in Engineering in medicine. 1976, Springer. p. 242-256.

    Google Scholar 

  14. Hoeppner D W, and Chandrasekaran V, Wear 173 (1994) 189.

    Article  CAS  Google Scholar 

  15. Rabbe L M, Rieu J, Lopez A, and Combrade P, Clin Mater 15 (1994) 221.

    Article  CAS  Google Scholar 

  16. Thull R and Schaldach M, Corrosion of Highly Stressed Orthopedic Joint Replacements, in Engineering in Medicine: Volume 2: Advances in Artificial Hip and Knee Joint Technology, M. Schaldach and D. Hohmann, Editors. 1976, Springer: Berlin, Heidelberg. p. 242–256.

  17. Rao S, Ushida T, Tateishi T, Okazaki Y, and Asao S, Bio-Med Mater Eng 6 (1996) 79.

    Article  CAS  Google Scholar 

  18. Yumoto S, Ohashi H, Nagai H, Kakimi S, Ogawa Y, Iwata Y, Ishii K, et al., Int J PIXE 2 (1992) 493.

    Article  Google Scholar 

  19. Wen H B, Wolke J G C, de Wijn J R, Liu Q, Cui F Z, and de Groot K, Biomaterials 18 (1997) 1471.

    Article  CAS  Google Scholar 

  20. P Andreazza, M.I De Barros, C Andreazza-Vignolle, D Rats, L Vandenbulcke (1998) Thin Solid Films. 319: 62.

    Article  CAS  Google Scholar 

  21. Uchida M, Nihira N, Mitsuo A, Toyoda K, Kubota K, and Aizawa T, Surf Coat Technol 177178 (2004) 627.

    Article  Google Scholar 

  22. X Nie, E.I Meletis, J.C Jiang, A Leyland, A.L Yerokhin, A Matthews (2002) Surf Coat Technol 149: 245.

    Article  CAS  Google Scholar 

  23. Güleryüz H, and Çimenoğlu H, Biomaterials 25 (2004) 3325.

    Article  Google Scholar 

  24. Kweh S W K, Khor K A, and Cheang P, Biomaterials 23 (2002) 775.

    Article  CAS  Google Scholar 

  25. Brendel T, Engel A, and Rüssel C, J Mater Sci Mater Med 3 (1992) 175.

    Article  CAS  Google Scholar 

  26. Hanawa T, Kamiura Y, Yamamoto S, Kohgo T, Amemiya A, Ukai H, Murakami K, and Asaoka K, J Biomed Mater Res 36 (1997) 131.

    Article  CAS  Google Scholar 

  27. Sathishkumar S, Louis K, lShinyjoy E, Gopi (2016) Industrial & Engineering Chemistry Research 55: 6331.

    Article  CAS  Google Scholar 

  28. Chai C, and Ben-Nissan B, J Mater Sci Mater Med 10 (1999) 465.

    Article  CAS  Google Scholar 

  29. D’Antonio J A, Capello W N, Manley M T, Geesink R G T, and Jaffe W L, Hydroxyapatite femoral stems for total hip arthroplasty: 10–14 year follow-up. in Fifteen Years of Clinical Experience with Hydroxyapatite Coatings in Joint Arthroplasty, Springer (2004), pp 235–241.

    Chapter  Google Scholar 

  30. Gross K A, Chai C S, Kannangara G S, Ben-Nissan B, and Hanley L, J Mater Sci Mater Med 9 (1998) 839.

    Article  CAS  Google Scholar 

  31. Mediaswanti K, Wen C, Ivanova E P, Berndt C C, and Wang J, Titanium Alloys Adv Propert Control 21 (2013) 23.

    Google Scholar 

  32. Fernández-Pradas J M, Clèries L, Martı́nez E, Sardin G, Esteve J, and Morenza J L, Biomaterials 22 (2001) 2171.

    Article  CAS  Google Scholar 

  33. Guo L, and Li H, Surf Coat Technol 185 (2004) 268.

    Article  CAS  Google Scholar 

  34. Liu D, Savino K, and Yates M Z, Surf Coat Technol 205 (2011) 3975.

    Article  CAS  Google Scholar 

  35. Song Y, Shan D, and Han E, Mater Lett 62 (2008) 3276.

    Article  CAS  Google Scholar 

  36. Ramakrishna S, Mayer J, Wintermantel E, and Leong K W, Compos Sci Technol 61 (2001) 1189.

    Article  CAS  Google Scholar 

  37. Sridhar T, Mudali U K, and Subbaiyan M, Corros Sci 45 (2003) 2337.

    Article  CAS  Google Scholar 

  38. Staiger M P, Pietak A M, Huadmai J, and Dias G, Biomaterials 27 (2006) 1728.

    Article  CAS  Google Scholar 

  39. Zhong Z, Qin J, and Ma J, Mater Sci Eng C 49 (2015) 251.

    Article  CAS  Google Scholar 

  40. Yang Y, Kim K-H, and Ong J L, Biomaterials 26 (2005) 327.

    Article  CAS  Google Scholar 

  41. Asri R I M, Harun W S W, Hassan M A, Ghani S A C, and Buyong Z, J Mech Behav Biomed Mater 57 (2016) 95.

    Article  CAS  Google Scholar 

  42. He D, Wang P, Liu P, Liu X, Ma F, Li W, Chen X, Zhao J and Ye H, J Wuhan Univ Technol Mater Sci Ed 31 (2016) 461.

    Article  CAS  Google Scholar 

  43. Zhang S, Wang Y S, Zeng X T, Khor K A, Weng W, and Sun D E, Thin Solid Films 516 (2008) 5162.

    Article  CAS  Google Scholar 

  44. Guan K, Zhang L, Zhu F, Li H, Sheng H, and Guo Y, J Alloys Compd 821 (2020) 153543

    Article  CAS  Google Scholar 

  45. Martin J Y, Schwartz Z, Hummert T W, Schraub D M, Simpson J, Lankford J, Dean D D, Cochran D L, and Boyan B D, J Biomed Mater Res 29 (1995) 389.

    Article  CAS  Google Scholar 

  46. Schwartz Z, Martin JY, Dean DD, Simpson J, Cochran DL and Boyan BD, Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials and The Japanese Society for. Biomaterials 30 (1996) 145.

    CAS  Google Scholar 

  47. Chehroudi B, McDonnell D, and Brunette D, J Biomed Mater Res Off J Soc Biomater Jpn Soc Biomater 34 (1997) 279.

    Article  CAS  Google Scholar 

  48. Brunette D, Int J Oral Maxillofac Implants 3 (1988) 4.

    Google Scholar 

  49. Qiu D, Wang A, and Yin Y, Appl Surf Sci 257 (2010) 1774.

    Article  CAS  Google Scholar 

  50. Catauro M, Papale F, and Bollino F, J Non-Crystal Solids 415 (2015) 9.

    Article  CAS  Google Scholar 

  51. Farrokhi-Rad M, Khosrowshahi Y B, Hassannejad H, Nouri A, and Hosseini M, Mater Res Express 5 (2018) 115004

    Article  Google Scholar 

  52. Qiu D, Yang L, Yin Y, and Wang A, Surf Coat Technol 205 (2011) 3280.

    Article  CAS  Google Scholar 

  53. Yusoff M F M, Rafiq M, Kadir A, Iqbal N, Hassan, M A, and Hussain R, Surf Coat Technol 245 (2014) 102.

    Article  Google Scholar 

  54. Huang Y, Han S, Pang X, Ding Q, and Yan Y, Appl Surf Sci 271 (2013) 299.

    Article  CAS  Google Scholar 

  55. Zhong Z, Qin J, and Ma J, Ceram Int 41 (2015) 8878.

    Article  CAS  Google Scholar 

  56. Zhang X, Li Q, Li L, Zhang P, Wang Z, and Chen F, Mater Lett 88 (2012) 76.

    Article  CAS  Google Scholar 

  57. Vahabzadeh S, Roy M, Bandyopadhyay A, and Bose S, Acta Biomater 17 (2015) 47.

    Article  CAS  Google Scholar 

  58. Janković A, Eraković S, Vukašinović-Sekulić M, Mišković-Stanković V, Park S J, and Rhee K Y, Prog Organ Coat 83 (2015) 1.

    Article  Google Scholar 

  59. Kokubo T, and Yamaguchi S, Open Biomed Eng J 9 (2015) 29. https://doi.org/10.2174/1874120701509010029

    Article  CAS  Google Scholar 

  60. Ravelingien M, Mullens S, Luyten J, Meynen V, Vinck E, Vervaet C and Remon JP, Ceramics-Silikaty 54 (2010) 3.

    Google Scholar 

  61. Suzan B, Saber Y, Maximilian M, Edward V, and Amir Z, Materials 8 (2015) 1612.

    Article  CAS  Google Scholar 

  62. Takadama H, Kim HM, Kokubo T and Nakamura T, J Biomed Mater Res Off J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Korean Soc Biomater 57 (2001) 441.

    CAS  Google Scholar 

  63. Ravelingien M, Mullens S, Luyten J, Meynen V, Vinck E, Vervaet C, and Remon J P, Appl Surf Sci 255 (2009) 9539.

    Article  CAS  Google Scholar 

  64. Harun W S W, Asri R I M, Alias J, Zulkifli F H, Kadirgama K, Ghani S A C, and Shariffuddin J H M, Ceram Int 44 (2018) 1250.

    Article  CAS  Google Scholar 

  65. Kokubo T, and Yamaguchi S, Open Biomed Eng J 9 (2015) 29.

    Article  CAS  Google Scholar 

  66. Kim H-M, Miyaji F, Kokubo T, and Nakamura T, J Biomed Mater Res 32 (1996) 409.

    Article  CAS  Google Scholar 

  67. Yang Z, Xia L, Li W and Han J, J Adv Biomed Eng Technol 2 (2015) 13.

    Article  Google Scholar 

  68. Williams D F, Bioactive Mater 10 (2022) 306.

    Article  CAS  Google Scholar 

  69. Zhu L, Luo D, and Liu Y, Int J Oral Sci 12 (2020) 1.

    Article  Google Scholar 

  70. Woesz A, and Best S, Cellular response to bioceramics. in Cellular Response to Biomaterials, Elsevier (2009), pp 136–155.

    Chapter  Google Scholar 

  71. Ducheyne P, J Biomed Mater Res 21 (1987) 219.

    CAS  Google Scholar 

  72. Kwok C T, Wong P K, Cheng F T, and Man H C, Appl Surf Sci 255 (2009) 6736.

    Article  CAS  Google Scholar 

  73. STANDARD, I., Implants for surgery-hydroxyapatite (2008).

  74. Avcu E, Baştan F E, Abdullah H Z, Ur Rehman M A, Avcu, Y Y, and Boccaccini A R, Prog Mater Sci 103 (2019) 69.

    Article  CAS  Google Scholar 

  75. Nie X, Leyland A, and Matthews A, Surf Coat Technol 125 (2000) 407.

    Article  CAS  Google Scholar 

  76. Wang L-N, and Luo J-L, Mater Charact 62 (2011) 1076.

    Article  CAS  Google Scholar 

  77. Pei X, Zeng Y, He R, Li Z, Tian L, Wang J, Wan Q, Li X, and Bao H, Appl Surf Sci 295 (2014) 71.

    Article  CAS  Google Scholar 

  78. Zhang Y-y, Tao J, Pang Y-c, Wang W, and W Tao, Trans Nonferrous Met Soc China 16 (2006) 633.

    Article  CAS  Google Scholar 

  79. Albayrak O, El-Atwani O, and Altintas S, Surf Coat Technol 202 (2008) 2482.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nosheen Maryam Awan or Muhammad Ishtiaq.

Ethics declarations

Conflict of interest

The authors report that there is no competing interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awan, N.M., Manzoor, M.U., Hussain, F. et al. A Feasible Route to Produce 30 MPa Adhesion Strength of Electrochemically Deposited Hydroxyapatite (HA) on Titanium (Ti6Al4V) Alloy. Trans Indian Inst Met 76, 1653–1660 (2023). https://doi.org/10.1007/s12666-023-02876-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-023-02876-7

Keywords

Navigation