Skip to main content
Log in

Biological Synthesis of Gold Nanoparticles from Suspensions of Green Microalga Dunaliella salina and Their Antibacterial Potential

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Green synthesis of nanoparticles has been widely considered because of its applications in various fields such as medicine and pharmaceutical industries. The synthesis of nanoparticles using microalgae is less known, hence the attention of researchers in this context already has been attracted. In the present study, gold nanoparticles (GNPs) were synthesized from gold(III) chloride trihydrate (HAuCl4·3H2O) by an ecofriendly, low-cost method using a green microalgae Dunaliella salina as a reducing and stabilizing agent simultaneously. The effect of pH, algal suspension volume, algal population, gold salt concentration, and temperature was studied for determining the optimum conditions of GNP synthesis. Biosynthesis of GNPs was monitored by UV–Visible (UV–Vis) absorption spectroscopy, which showed surface plasmon resonance band at 550 nm. The Fourier transform infrared (FT-IR) spectroscopy revealed that the functional groups of algal cells including hydroxyl (–OH), carbonyl (C = O), and amine (–NH) interact with gold ions to reduce and stabilize GNPs. The electron graphs (TEM and SEM) showed that the resulting GNPs are all almost spherical with the average size of 50 nm. The presence of sharp peaks in X-ray diffraction (XRD) patterns shows a high degree of crystallinity with the face-centered cubic (FCC) structure for GNPs generated by D. salina suspension. The antibacterial effect of 0.05 mg ml−1 of synthesized GNPs displayed a significant bactericidal power on Gram-positive bacteria. These results suggest that algae-synthesized GNPs have a high potential for clinical and pharmaceutical purposes, which support its commercial generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Balamurugan, M., Kaushik, S., & Saravanan, S. H. (2016). Green Synthesis of gold nanoparticles by using Peltophorum Pterocarpum flower extracts. Nano Biomedicine and Engineering, 8(4), 213–218.

    Article  Google Scholar 

  2. Arya, V. (2013). Biological synthesis of silver nanoparticles from aqueous extract of endophytic fungus Aspergillus fumigatus and its antibacterial action. International Journal of Nanomaterials and Biostructures, 3(2), 37–41.

    Google Scholar 

  3. Keat, Ch. L., Aziz, A., Eid, A. M., & Elmarzugi, N. A. (2015). Biosynthesis of nanoparticles and silver nanoparticles. Bioresources and Bioprocessing, 2(47), 1–11.

    Google Scholar 

  4. El-Sheikh, M. A., El-Rafie, S. M., Abdel-Halim, E. S., & El-Rafie, M. H. (2013). Green synthesis of hydroxyethyl cellulose-stabilized silver nanoparticles. Journal of Polymers, 2013, 1–11.

    Article  Google Scholar 

  5. Rajan, A., Rajan, A. R., & Philip, D. (2017). Elettaria cardamomum seed mediated rapid synthesis of gold nanoparticles and its biological activities. Open Nano, 2, 1–8.

    Google Scholar 

  6. Rigi, M. (2016). Antimicrobial activities of gold and silver nanoparticles against Vibrio cholera. International Journal of Advanced Biological and Biomedical Research, 4(1), 104–107.

    Article  Google Scholar 

  7. Ingale, A. G., & Chaudhari, A. N. (2013). Biogenic synthesis of nanoparticles and potential applications: An eco- friendly approch. Journal of Nanomedicine and Nanotechnology, 4(2), 1–7.

    Article  Google Scholar 

  8. Rajeshkumar, S., Malarkodi, C., Gnanajobitha, G., Paulkumar, K., Vanaja, M., Kannan, C., & Annadurai, G. (2013). Seaweed-mediated synthesis of gold nanoparticles using Turbinaria conoides and its characterization. Journal of Nanostructure in Chemistry, 3(44), 1–7.

    Google Scholar 

  9. Ramakrishna, M., Babu, D. R., Gengan, R. M., Chandra, S., & Nageswara Rao, G. (2016). Green synthesis of gold nanoparticles using marine algae and evaluation of their catalytic activity. Journal of Nanostructure in Chemistry, 6(1), 1–13.

    Article  Google Scholar 

  10. Sanghi, R., & Verma, P. (2009). Biomimetic synthesis and characterization of protein capped silver nanoparticles. Bioresource Technology, 100, 501–504.

    Article  Google Scholar 

  11. Rigi, E. S., Ghodake, G. S., Deshpande, N. G., & Lee, Y. P. (2010). Pear fruit extract-assisted room temperature biosynthesis of gold nanoplates. Colloids and Surfaces B, 75, 584–589.

    Article  Google Scholar 

  12. Mansuya, P., Aruna, P., Sridhar, S., Kumar, J. S., & Babu, S. (2010). Antibacterial activity and qualitative phytochemical analysis of selected seaweeds from Gulf of Mannar Region. Journal of Experimental Sciences, 1(8), 23–26.

    Google Scholar 

  13. Taruna, Kaushal, J., Bhatti, J., & Kumar, P. (2016). Green synthesis and physico-chemical study of silver nanoparticles extracted from a natural source Luffa acutangula. Journal of Molecular Liquids, 224, 991–998.

    Article  Google Scholar 

  14. Yan-yu, R., Hui, Y., Tao, W., & Chuang, W. (2016). Green synthesis and antimicrobial activity of monodisperse silver nanoparticles synthesized using Ginkgo Biloba leaf extract. Physics Letters A, 380, 3773–3777.

    Article  Google Scholar 

  15. Swaminathan, S., Murugesan, S., Damodarkumar, S., Dhamotharan, R., & Bhuvaneshwari, S. (2011). Synthesis and characterization of gold nanoparticles from alga Acanthophora spicifera (VAHL) Boergesen. International Journal of Nanoscience Nanotechnology, 2, 85–94.

    Google Scholar 

  16. Rajasulochana, P., Krishnamoorthy, P., & Dhamotharan, R. (2012). Potential application of Kappaphycus alvarezii in agricultural and pharmaceutical industry. Journal of Chemical and Pharmaceutical Research, 4, 33–37.

    Google Scholar 

  17. Singaravelu, G., Arockiamary, J., Kumar, V. G., & Govindaraju, K. (2007). A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids and Surfaces B, 57(1), 97–101.

    Article  Google Scholar 

  18. Dhas, T. S., Kumar, V. G., Abraham, L. S., Karthick, V., & Govindaraju, K. (2012). Sargassum myriocystum mediated biosynthesis of gold nanoparticles. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 99, 97–101.

    Article  Google Scholar 

  19. Rajathi, F. A. A., Parthiban, C., Kumar, V. G., & Anantharaman, P. (2012). Biosynthesis of antibacterial gold nanoparticles using brown alga, Stoechospermum marginatum (Ku¨tzing). Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 99, 166–173.

    Article  Google Scholar 

  20. Ghodake, G., & Lee, D. S. (2011). Biological synthesis of gold nanoparticles using the aqueous extract of the brown algae Laminaria japonica. Journal of Nanoelectronics and Optoelectronics, 6(3), 1–4.

    Article  Google Scholar 

  21. Oza, G., Pandey, S., Mewada, A., Kalita, G., Sharon, M., Phata, J., Ambernath, W., & Sharon, M. (2012). Facile biosynthesis of gold nanoparticles exploiting optimum pH and temperature of fresh water algae Chlorella pyrenoidusa. Advances in Applied Science Research, 3(3), 1405–1412.

    Google Scholar 

  22. Singh, A. K., Tiwari, R., Kumar, V., Singh, P., Riyazat Khadim, S. K., Tiwari, A., Srivastava, V., Hasan, S. H., & Asthana, R. K. (2017). Photo-induced biosynthesis of silver nanoparticles from aqueous extract of Dunaliella salina and their anticancer potential. Journal of Photochemistry and Photobiology B: Biology, 166, 202–211.

    Article  Google Scholar 

  23. Rothschild, L. J., & Mancinilli, R. L. (2001). Life in extreme environments. Nature, 409(6823), 1092–1101.

    Article  Google Scholar 

  24. Giordano, M., Pezzoni, V., & Hell, R. (2000). Strategies for the allocation of resources under sulfur limitation in the green alge Dunaliella salina. Plant Physiology, 124(2), 857–864.

    Article  Google Scholar 

  25. Jau-Tien, L., Ying-Chung, L., Chao-Chin, H., You-Cheng, S., Fung-Jou, L., & Deng-Jye, H. (2010). Evaluation of carotenoid extract from Dunaliella salina against cadmium-induced cytotoxicity and transforming growth factor β1 induced expression of smooth muscle α-actin with rat liver cell lines. Journal of Food and Drug Analysis, 18(5), 301–306.

    Google Scholar 

  26. Ben-Amotz, A., & Shaish, A. (1992). Biosynthesis β-carotene. In M. Avron & A. Ben-Amotz (Eds.), Dunaliella physiology, biochemistry and biotechnology (pp. 205–216). CRC Press.

    Google Scholar 

  27. Widowati, I., Zainuri, M., Kusumaningrum, H. P., Susilowati, R., Hardivillier, Y., Leignel, V., Bourgougnon, N., Mouget, J. L. (2017). Antioxidant activity of three microalgae Dunaliella salina, Tetraselmis chuii and Isochrysis galbana clone Tahiti. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bali, Indonesia, 55, 012067.

  28. Roy, U. K., Nielsen, B. V., & Milledge, J. J. (2021). Antioxidant production in Dunaliella. Applied Sciences, 11, 3959.

    Article  Google Scholar 

  29. Einali, A., & Valizadeh, J. (2015). Propyl gallate promotes salt stress tolerance in green microalga Dunaliella salina by reducing free radical oxidants and enhancing β-carotene production. Acta Physiologiae Plantarum, 37(4), 83.

    Article  Google Scholar 

  30. Bauer, R. W., Kirby, M. D. K., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by standard single disc diffusion method. American Journal of Clinical Pathology, 45, 493–496.

    Article  Google Scholar 

  31. Lee, K. X., Shameli, K., Yew, Y. P., Teow, S. Y., Jahangirian, H., Rafiee-Moghaddam, R., & Webster, T. J. (2020). Recent developments in the facile bio-synthesis of gold nanoparticles (AuNPs) and their biomedical applications. International Journal of Nanomedicine, 15, 275–300.

    Article  Google Scholar 

  32. El-Sayed, I. H., Huang, X., & El-Sayed, M. A. (2005). Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Letters, 5, 829–834.

    Article  Google Scholar 

  33. Smitha, S. L., Philip, D., & Gopchandran, K. G. (2009). Green synthesis of gold nanoparticles using Cinnamomum zeylanicum leaf broth. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 74, 735–739.

    Article  Google Scholar 

  34. Rajasekharreddy, P., Rani, P. U., & Sreedhar, B. (2010). Qualitative assessment of silver and gold nanoparticle synthesis in various plants: A photobiological approach. Journal of Nanoparticle Research, 12, 1711–1721.

    Article  Google Scholar 

  35. Inbakanda, D., Venkatesan, R., & Khan, S. A. (2010). Biosynthesis of gold nanoparticles utilizing marine sponge Acanthella elongata. Colloids and Surfaces B, 81, 634–639.

    Article  Google Scholar 

  36. Waghmar, S. S., Deshmukh, A. M., & Sadowski, Z. (2014). Biosynthesis, optimization, purification and characterization of gold nanoparticles. African Journal of Microbiology Research, 8(2), 138–146.

    Article  Google Scholar 

  37. Kathiravan, V., Ravi, S., Ashokkumar, S., Velmurugan, S., Elumalai, K., & Khatiwada, Ch. P. (2015). Green synthesis of silver nanoparticles using Croton sparsiflorus morong leaf extract and their antibacterial and antifungal activities. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 139, 200–205.

    Article  Google Scholar 

  38. Gardea-Torresdey, J. L., Tiemann, K. J., Gamez, G., Dokken, K., Tehuacanero, S., & Jose- Yacaman, M. (1999). Gold nanoparticles obtained by bio-precipitation from gold (III) solutions. Journal of Nanoparticle Research, 1, 397–402.

    Article  Google Scholar 

  39. Azizian Shermeh, O., Einali, A., & Ghasemi, A. (2017). Rapid biologically one-step synthesis of stable bioactive silver nanoparticles using Osage orange (Maclura pomifera) leaf extract and their antimicrobial activities. Advanced Powder Technology, 28, 3164–3171.

    Article  Google Scholar 

  40. Armendariz, V., Herrera, I., Peraltavidea, J. R., & Joseyacaman, M. (2004). Size controlled gold nanoparticle formation by avena sativa biomass use of plants in nanobiotechnology. Journal of Nanoparticle Research, 6, 377–385.

    Article  Google Scholar 

  41. Castro, L., Luisa Blazquez, M., Angel Munoz, J., González, F., & Ballester, A. (2013). Biological synthesis of metallic nanoparticles using algae. IET Nanobiotechnology, 7(3), 109–116.

    Article  Google Scholar 

  42. Velmurugan, P., Anbalagan, K., Manosathyadevan, M., Lee, K.-J., Cho, M., Lee, S.-M., Park, J.-H., Oh, S.-G., Bang, K.-S., & Oh, B.-T. (2014). Green synthesis of silver and gold nanoparticles using Zingiber officinale root extract and antibacterial activity of silver nanoparticles against food pathogens. Bioprocess and Biosystems Engineering, 37, 1935–1943.

    Article  Google Scholar 

  43. Dwivedi, A. D., & Gopal, K. (2010). Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids and Surfaces A, 369, 27–33.

    Article  Google Scholar 

  44. Sant, G. D., Gujarathi, T. R., Harne, Sh. R., Ghosh, S., Kitture, R., Kale, S., Chopade, B. A., & Pardesi, K. R. (2013). Adiantum philippense L. frond assisted rapid green synthesis of gold and silver nanoparticles. Journal of Nanoparticles, 2013, 1–9.

    Article  Google Scholar 

  45. Bakshi, M. S., Sachar, S., Kaur, G., Bhandari, P., Kaur, G., Biesinger, M. C., Possmayer, F., & Petersen, N. O. (2008). Dependence of crystal growth of gold nanoparticles on the capping behavior of surfactant at ambient conditions. Crystal Growth & Design, 8, 1713–1719.

    Article  Google Scholar 

  46. Philip, D. (2010). Rapid green synthesis of spherical gold nanoparticles using Mangifera indica leaf. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 77, 807–810.

    Article  Google Scholar 

  47. Iravani, S., & Zolfaghari, B. (2013). Green synthesis of silver nanoparticles using Pinus eldarica bark extract. BioMed Research International, 2013, 1–6.

    Article  Google Scholar 

  48. Oluwaniyi, O. O., Adegoke, H. I., Adesuji, E. T., Alabi, A. B., Bodede, A. O., Labulo, A. H., & Oseghale, C. O. (2016). Biosynthesis of silver nanoparticles using aqueous leaf extract of Thevetia peruviana Juss and its antimicrobial activities. Applied Nanoscience, 6, 903–912.

    Article  Google Scholar 

  49. Patra, J. K., & Baek, K. H. (2014). Green nanobiotechnology: factors affecting synthesis and characterization techniques. Journal of Nanomaterials, 2014, 417305.

    Article  Google Scholar 

  50. Song, J. Y., & Kim, B. S. (2009). Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess and Biosystems Engineering, 32(1), 79–84.

    Article  Google Scholar 

  51. Kaviya, S., Santhanalakshmi, J., & Viswanathan, B. (2011). Green synthesis of silver nanoparticles using Polyalthia longifolia leaf extract along with DSorbitol: Study of antibacterial activity. Journal of Nanotechnology, 2011, 1–5.

    Article  Google Scholar 

  52. Noruzi, M., Zare, D., Khoshnevisan, K., & Davoodi, D. (2011). Rapid green synthesis of gold nanoparticles using Rosa hybrida petal extract at room temperature. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy A, 79, 1461–1465.

    Article  Google Scholar 

  53. Narayanan, K. B., & Sakthivel, N. (2008). Coriander leaf mediated biosynthesis of gold nanoparticles. Materials Letters, 62, 4588–4590.

    Article  Google Scholar 

  54. Soltaninejad, M., Khatami, M., & Shahidi Bonjar, G. H. (2016). Extracellular synthesis gold nanotriangles using biomass of Streptomyces microflavus. IET Nanobiotechnology, 10(1), 33–38.

    Article  Google Scholar 

  55. Hassaan, M. A., & Hosny, Sh. (2018). Green synthesis of Ag and Au nanoparticles from micro and macro algae – review. International Journal of Atmospheric and Oceanic Sciences, 2(1), 10–22.

    Article  Google Scholar 

  56. Bellamy, L. J. (1975). Infrared spectra of complex molecules. Chapman Hall.

    Book  Google Scholar 

  57. Ahmed, K. K. M., Rana, A. C., & Dixit, V. K. (2005). Calotropis species (Asclepediaceae). A comprehensive review. Pharmacognosy Magazine, 1, 48–52.

    Google Scholar 

  58. Ramamurthy, N., & Kannan, S. (2007). Fourier transform infrared spectroscopic analysis of plant (Calotropis Gigantea Linn) from an industrial village, Cuddalore Dt, Tamilandu, India. Romanian Journal of Biophysics, 17, 269–276.

    Google Scholar 

  59. Li, Y. M., Sun, S. Q., Zhou, Q., Qin, Z., Tao, J. X., Wang, J., & Fang, X. (2004). Identification of American ginseng from different regions using FT-IR and two-dimensional correlation IR spectroscopy. Vibrational Spectroscopy, 36, 227–232.

    Article  Google Scholar 

  60. Xu, Y., Zhang, S., Lin, S., Guo, Y., Deng, W., Zhang, Y., & Xue, Y. (2017). WERAM: A database of writers, erasers and readers of histone acetylation and methylation in eukaryotes. Nucleic Acids Research, 45(D1), D264–D270.

    Google Scholar 

  61. Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramrez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16, 2346–2353.

    Article  Google Scholar 

  62. Wang, L., Hu, C., & Shao, L. (2017). The antimicrobial activity of nanoparticles: Present situation and prospects for the future. International Journal of Nanomedicine, 12, 1227–1249.

    Article  Google Scholar 

  63. Sreekanth, T., & Eom, I. Y. (2014). Biogenic gold nanoparticles and its antibacterial activities: Houttuynia cordata leaf extract. Advances in Materials Research, 1051, 392–397.

    Article  Google Scholar 

  64. Rajan, A., Vilas, V., & Philip, D. (2012). Studies on catalytic, antioxidant, antibacterial and anticancer activities of biogenic gold nanoparticles. Journal of Molecular Liquids, 212, 331–339.

    Article  Google Scholar 

  65. Seetharaman, P., Chandrasekaran, R., Gnanasekar, S., Mani, I., & Sivaperumal, S. (2017). Biogenic gold nanoparticles synthesized using Crescentia cujete L. and evaluation of their different biological activities. Biocatalysis and Agricultural Biotechnology, 11, 75–82.

    Article  Google Scholar 

  66. Priyadarshini, E., Pradhan, N., Sukla, L. B., & Panda, P. K. (2014). Controlled synthesis of gold nanoparticles using Aspergillus terreus IF0 and its antibacterial potential against Gram negative pathogenic bacteria. Journal of Nanotechnology, 2014, 653198.

    Article  Google Scholar 

  67. Balagurunathan, D., Radhakrishnan, R., Rajendran, M., & Velmurugan, R. B. (2011). Biosynthesis of gold nanoparticles by actinomycete Streptomyces viridogens strain HM10. Indian Journal of Biochemistry & Biophysics, 48, 331–335.

    Google Scholar 

  68. Ramamurthy, C. H., Padma, M., MariyaSamadanam, I. D., Mareeswaran, R., Suyavaran, A., Kumar, M. S., Premkumar, K., & Thirunavukkarasu, C. (2013). The extra cellular synthesis of gold and silver nanoparticles and their free radical scavenging and antibacterial properties. Colloids and Surfaces. B, Biointerfaces, 102, 808–815.

    Article  Google Scholar 

  69. Bindhu, M. R., & Umadevi, M. (2014). Antibacterial activities of green synthesized gold nanoparticles. Materials Letters, 120, 122–125.

    Article  Google Scholar 

  70. Skladanowski, M., Wypij, M., Laskowski, D., Goli-nska, P., Dahm, H., & Rai, M. (2017). Silver and gold nanoparticles synthesized from Streptomyces sp. Isolated from acid forest soil with special reference to its antibacterial activity against pathogens. Journal of Cluster Science, 28, 59–79.

    Article  Google Scholar 

  71. Edison, T. J. I., & Sethuraman, M. G. (2012). Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Process Biochemistry, 47, 1351–1357.

    Article  Google Scholar 

  72. Patra, J. K., Kwon, Y., & Baek, K.-H. (2016). Green biosynthesis of gold nanoparticles by onion peel extract: Synthesis, characterization and biological activities. Advanced Powder Technology, 27, 2204–2213.

    Article  Google Scholar 

  73. Abdel-Raouf, N., Al-Enazi, N. M., & Ibraheem, I. B. M. (2017). Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arabian Journal of Chemistry, 10, S3029–S3039.

    Article  Google Scholar 

  74. ArockiyaAarthiRajathi, F., Parthiban, C., Ganesh Kumar, V., & Anantharaman, P. (2012). Biosynthesis of antibacterial gold nanoparticles using brown alga, Stoechospermum marginatum (kützing). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 99, 166–173.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Deputy of Research at the University of Sistan and Baluchestan for the financial support in the form of grants for the research project.

Funding

This work was funded by the MSc Research Grant (USB/22052) received from the Deputy of Research at the University of Sistan and Baluchestan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Einali.

Ethics declarations

Research Involving Humans and Animals Statement

None.

Informed Consent

None.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basiratnia, E., Einali, A., Azizian-Shermeh, O. et al. Biological Synthesis of Gold Nanoparticles from Suspensions of Green Microalga Dunaliella salina and Their Antibacterial Potential. BioNanoSci. 11, 977–988 (2021). https://doi.org/10.1007/s12668-021-00897-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-021-00897-4

Keywords

Navigation