Skip to main content

Advertisement

Log in

Synthesis and Stability of Magnetic Nanoparticles

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Magnetic nanoparticles are a class of nanoparticle that can be manipulated using magnetic fields. Such particles commonly consist of two components, a magnetic material, often iron, nickel, and cobalt, and a chemical component that has functionality. While nanoparticles are smaller than 1 µm in diameter (typically 1–100 nm), the larger microbeads are 0.5–500 µm in diameter. Magnetic nanoparticle clusters that are composed of a number of individual magnetic nanoparticles are known as magnetic nanobeads with a diameter of 50–200 nm. Magnetic nanoparticle clusters are a basis for their further magnetic assembly into magnetic nanochains. The magnetic nanoparticles have been the focus of much research recently because they possess attractive properties which could see potential use in catalysis including nanomaterial-based catalysts, biomedicine and tissue-specific targeting, magnetically tunable colloidal photonic crystals, microfluidics, magnetic resonance imaging, magnetic particle imaging, data storage, environmental remediation, nanofluids, optical filters, defect sensor, magnetic cooling, and cation sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Muller, R. N., Laurent, S., Forge, D., Roch, A., Robic, C., & VanderElst, L. (2008). Magnetic iron oxide nanoparticles. Chemical Reviews, 108, 2064–2110.

    Article  Google Scholar 

  2. Yamini, Y., Faraji, M., & Rezaee, M. (2010). Magnetic nanoparticles: Synthesis, stabilization, functionalization, characterization, applications. Journal of Iranian Chemical Society, 7, 1–37.

    Article  Google Scholar 

  3. Schüth, F., Lu, A.-H., & Salbas, E. L. (2007). Magnetic nanoparticles: Synthesis, protection, functionalization, application. Angewandte Chemie International, 46, 1222–1244.

    Article  Google Scholar 

  4. Couvreur, P., Reddy, L. H., Arias, J. L., & Nicolas, J. (2012). Magnetic nanoparticles. Chemical Reviews, 112, 5818–5878.

    Article  Google Scholar 

  5. Colombo, M., Romero, S. C., Casula, M. F., Gutiérrez, L., Morales, M. P., Böhm, I. B., Heverhagen, J. T., Prosperi, D., & Parak, W. J. (2012). Biological applications of magnetic nanoparticles. Chemical Society Reviews, 41, 4306–4334.

    Article  Google Scholar 

  6. Katz, E. (2019). Synthesis, properties and applications of magnetic nanoparticles and nanowires—A brief introduction. Magnetochemistry, 5, 61.

    Article  Google Scholar 

  7. Lyer, Stefan, Singh, Raminder, Tietze, Rainer, & Alexiou, Christoph. (2015). Magnetic nanoparticles for magnetic drug targeting. Biomedical Engineering / Biomedizinische Technik, 60(5), 465–475. https://doi.org/10.1515/bmt-2015-0049

    Article  Google Scholar 

  8. Hepel, M. (2020). Magnetic Nanoparticles in Nanomedicine. Magnetochemistry, 6, 3.

    Google Scholar 

  9. Piñeiro, Y., González Gómez, M., de Castro, L., Arnosa Prieto, A., García Acevedo, P., Seco Gudiña, R., Puig, J., Teijeiro, C., Yáñez-Vilar, S., & Rivas, J. (2020). Hybrid nanostructured magnetite nanoparticles: From bio-detection and theragnostics to regenerative medicine. Magnetochemistry, 6, 4.

    Article  Google Scholar 

  10. Bruschi, M. L., & de Toledo, L. D. A. S. (2019). Pharmaceutical applications of iron-oxide magnetic nanoparticles. Magnetochemistry, 5, 50.

    Article  Google Scholar 

  11. Bilal, M., Mehmood, S., Rasheed, T., & Iqbal, H. M. N. (2019). Bio-catalysis and biomedical perspectives of magnetic nanoparticles as versatile carriers. Magnetochemistry, 5, 42.

    Article  Google Scholar 

  12. Gul, S., Khan, S. B., Rehman, I. U., Khan, M. A., & Khan, M. I. (2019). A comprehensive review of magnetic nanomaterials modern day theranostics. Front. Mater., 6, 179. https://doi.org/10.3389/fmats.2019.00179

    Article  Google Scholar 

  13. Ihsan Ali, Tian Yong Qiang, Nikhat Ilahi, Mian Adnan, Wasim Sajjad (2018) Green synthesis of silver nanoparticles by using bacterial extract and its antimicrobial activity against pathogens. Int J Biosci 13(5):1–15. https://doi.org/10.12692/ijb/13.5.1-15.

  14. Kakakhel, M. A., Saif, I., Ullah, N., et al. (2021). Waste fruit peel mediated synthesis of silver nanoparticles and its antibacterial activity. BioNanoSci., 11, 469–475. https://doi.org/10.1007/s12668-021-00861-2

    Article  Google Scholar 

  15. Kakakhel, M. A., Wu, F., Feng, H., et al. (2021). Biological synthesis of silver nanoparticles using animal blood, their preventive efficiency of bacterial species, and ecotoxicity in common carp fish. Microscopy Research and Technique, 84, 1765–1774. https://doi.org/10.1002/jemt.23733

    Article  Google Scholar 

  16. Aghajanyan, A., Gabrielyan, L., Schubert, R. et al. (2020) Silver ion bioreduction in nanoparticles using Artemisia annua L. extract: characterization and application as antibacterial agents. AMB Expr 10:66. https://doi.org/10.1186/s13568-020-01002-w.

  17. Akbarzadeh, A., Samiei, M., & Davaran, S. (2012). Magnetic nanoparticles: Preparation, physical properties, and applications in biomedicine. Nanoscale Research Letters, 7, 144. https://doi.org/10.1186/1556-276X-7-144

    Article  Google Scholar 

  18. Dikshit, P. K., Kumar, J., Das, A. K., Sadhu, S., Sharma, S., Singh, S., Gupta, P. K., & Kim, B. S. (2021). Green synthesis of metallic nanoparticles: Applications and limitations. Catalysts, 11, 902. https://doi.org/10.3390/catal11080902

    Article  Google Scholar 

  19. Ajit Behera, P. Mallick, S.S. Mohapatra, Chapter 13 - Nanocoatings for anticorrosion: An introduction, Editor(s): Susai Rajendran, Tuan ANH Nguyen, Saeid Kakooei, Mahdi Yeganeh, Yongxin Li, In Micro and Nano Technologies, Corrosion Protection at the Nanoscale, Elsevier,2020,Pages 227–243,ISBN 9780128193594, https://doi.org/10.1016/B978-0-12-819359-4.00013-1.

  20. Lunguo Xia,2 - Importance of nanostructured surfaces, Editor(s): Akiyoshi Osaka, Roger Narayan,In Elsevier Series on Advanced Ceramic Materials, Bioceramics,Elsevier, 2021,Pages 5–24,ISBN 9780081029992,https://doi.org/10.1016/B978-0-08-102999-2.00002-8.

  21. Salimi, M., Pirouzfar, V., & Kianfar, E. (2017). Enhanced gas transport properties in silica nanoparticle filler-polystyrene nanocomposite membranes. Colloid and Polymer Science, 295, 215–226. https://doi.org/10.1007/s00396-016-3998-0

    Article  Google Scholar 

  22. Kianfar, E. (2018). Synthesis and Characterization of AlPO4/ZSM-5 Catalyst for methanol conversion to dimethyl ether. Russian Journal of Applied Chemistry, 91, 1711–1720. https://doi.org/10.1134/S1070427218100208

    Article  Google Scholar 

  23. Obaidat, I.M.; Narayanaswamy, V.; Alaabed, S.; Sambasivam, S.; Muralee Gopi, C.V.V. Principles of magnetic hyperthermia: A focus on using multifunctional hybrid magnetic nanoparticles. Magnetochemistry 2019, 5, 67.

  24. Hosu, O., Tertis, M., & Cristea, C. (2019). Implication of magnetic nanoparticles in cancer detection, screening and treatment. Magnetochemistry, 5, 55.

    Article  Google Scholar 

  25. Stergar, J., Ban, I., & Maver, U. (2019). The potential biomedical application of NiCu magnetic nanoparticles. Magnetochemistry, 5, 66.

    Article  Google Scholar 

  26. Chen, J., Wu, H., Han, D., & Xie, C. (2006). Using anti-VEGF McAb and magnetic nanoparticles as double-targeting vector for the radioimmunotherapy of liver cancer. Cancer Letters, 231(2), 169–175.

    Article  Google Scholar 

  27. Kianfar, E. (2021). Magnetic nanoparticles in targeted drug delivery: A review. JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 34(7), 1709–1735.

    Article  Google Scholar 

  28. Ali, A., Hira Zafar, M. Z., ulHaq, I., Phull, A. R., Ali, J. S., & Hussain, A. (2016). Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl., 9, 49. https://doi.org/10.2147/NSA.S99986

    Article  Google Scholar 

  29. Anselmo, A. C., & Mitragotri, S. (2017). Impact of particle elasticity on particle-based drug delivery systems. Adv. Drug Delivery Rev., 108, 51–67. https://doi.org/10.1016/j.addr.2016.01.007

    Article  Google Scholar 

  30. Bucak, S., Yavuztürk, B., and Sezer, A. D. (2012). “Magnetic nanoparticles: synthesis, surface modifications and application in drug delivery,” in Recent Advances in Novel Drug Carrier Systems (IntechOpen). Available online at: https://www.cd-bioparticles.com/t/Drug-Delivery_51.html (accessed October 22, 2017).

  31. Dhal, S., Mohanty, A., Yadav, I., Uvanesh, K., Kulanthaivel, S., Banerjee, I., et al. (2017). Magnetic nanoparticle incorporated oleogel as iontophoretic drug delivery system. Colloids Surfaces B Biointerfaces, 157, 118–129. https://doi.org/10.1016/j.colsurfb.2017.05.061

    Article  Google Scholar 

  32. Drozdov, A. S., Ivanovski, V., Avnir, D., & Vinogradov, V. V. (2016). A universal magnetic ferrofluid: Nanomagnetite stable hydrosol with no added dispersants and at neutral pH. Journal of Colloid and Interface Science, 468, 307–312. https://doi.org/10.1016/j.jcis.2016.01.061

    Article  Google Scholar 

  33. Hasany, S., Abdurahman, N., Sunarti, A., & Jose, R. (2013). Magnetic iron oxide nanoparticles: Chemical synthesis and applications review. Current Nanoscience, 9, 561–575. https://doi.org/10.2174/15734137113099990085

    Article  Google Scholar 

  34. Mody, V. V., Cox, A., Shah, S., Singh, A., Bevins, W., & Parihar, H. (2014). Magnetic nanoparticle drug delivery systems for targeting tumor. Applied Nanoscience, 4, 385–392. https://doi.org/10.1007/s13204-013-0216-y

    Article  Google Scholar 

  35. Mohammed, L., Gomaa, H. G., Ragab, D., & Zhu, J. (2017). Magnetic nanoparticles for environmental and biomedical applications: A review. Particuology, 30, 1–14. https://doi.org/10.1016/j.partic.2016.06.001

    Article  Google Scholar 

  36. Monsalve, A., Vicente, J., Grippin, A., & Dobson, J. (2017). Poly (lactic acid) magnetic microparticle synthesis and surface functionalization. IEEE Magnetics Letters, 8, 1–5. https://doi.org/10.1109/LMAG.2017.2726505

    Article  Google Scholar 

  37. Adimule, V., Yallur, B. C., Bhowmik, D., et al. (2021). Dielectric Properties of P3BT Doped ZrY2O3/CoZrY2O3 Nanostructures for low cost optoelectronics applications. Transactions on Electrical and Electronic Materials. https://doi.org/10.1007/s42341-021-00348-7

    Article  Google Scholar 

  38. Adimule, V., Yallur, B. C., & Sharma, K. (2021). Studies on crystal structure, morphology, optical and photoluminescence properties of flake-like Sb doped Y2O3 nanostructures. Journal of Optics. https://doi.org/10.1007/s12596-021-00746-3

    Article  Google Scholar 

  39. V. Adimule, S.S. Nandi, B.C. Yallur, D. Bhowmik, A.H. Jagadeesha., Enhanced photoluminescence properties of Gd (x-1) Sr x O: CdO nanocores and their study of optical, structural, and morphological characteristics. Materials Today Chemistry, DOI: https://doi.org/10.1016/j.mtchem.2021.100438.

  40. Adimule, V., Yallur, B. C., Bhowmik, D., et al. (2021). Morphology, structural and photoluminescence properties of shaping triple semiconductor YxCoO:ZrO2 nanostructures. Journal of Materials Science: Materials in Electronics, 32, 12164–12181. https://doi.org/10.1007/s10854-021-05845-2

    Article  Google Scholar 

  41. Adimule, V., Nandi, S. S., & Adarsha, H. J. (2021). A facile synthesis of Cr Doped WO3 nanostructures, study of their current-voltage, power dissipation and impedance properties of thin films. JNanoR, 67, 33–42.

    Article  Google Scholar 

  42. Vinayak M Adimule Debdas Bhowmik Adarsha Haramballi Jagadeesha (2021). Synthesis, impedance and current-voltage spectroscopic characterization of novel gadolinium titanate nano structures. Advanced Materials Letters, 12(6): 1–7. doi: https://doi.org/10.5185/amlett.2021.061638.

  43. Ronald S. Giordano and Robert D. Bereman (1974). Stereoelectronic properties of metalloenzymes. I. Comparison of the coordination of copper(II) in galactose oxidase and a model system, N,N'-ethylenebis(trifluoroacetylacetoniminato)copper(II). Journal of the American Chemical Society 96 (4), 1019–1023.DOI: https://doi.org/10.1021/ja00811a012.

  44. Adimule, V., Nandi, S. S., Yallur, B. C., et al. (2021). Optical, structural and photoluminescence properties of Gd x SrO: CdO nanostructures synthesized by co precipitation method. Journal of Fluorescence, 31, 487–499. https://doi.org/10.1007/s10895-021-02683-7

    Article  Google Scholar 

  45. Prashant M. Pawar,R. Balasubramaniam,Babruvahan P. Ronge,Santosh B. Salunkhe,Anup S. Vibhute,Bhuwaneshwari Melinamath. Proceedings of the 3rd International Conference on Advanced Technologies for Societal Applications—Volume 2. DOI: https://doi.org/10.1007/978-3-030-69925-3.

  46. Prashant M. PawarR. BalasubramaniamBabruvahan P. RongeSantosh B. SalunkheAnup S. VibhuteBhuwaneshwari Melinamath. Proceedings of the 3rd International Conference on Advanced Technologies for Societal Applications—Volume 2. DOI: Doi:https://doi.org/10.1007/978-3-030-69925-3_7.

  47. Adimule, V. M., Bowmik, D., & Adarsha, H. J. (2020). A facile synthesis of Cr doped WO3 nanocomposites and its effect in enhanced current-voltage and impedance characteristics of thin films. Lett. Mater., 10(4), 481–485.

    Article  Google Scholar 

  48. Santosh S. Nandi, Anusha Suryavanshi, Vinayak Adimule, and Basappa C. Yallur. (2020) Fabrication of novel rare earth doped ionic perovskite nanomaterials of Sr0.5, Cu0.4, Y0.1 and Sr0.5 and Mn0.5 for high power efficient energy harvesting photovoltaic cells. AIP Conference Proceedings 2274, 020005. https://doi.org/10.1063/5.0022450.

  49. Santosh S. Nandi, Anusha Suryavanshi, Vinayak Adimule, and Sanjeev Reddy Maradur (2020) Semiconductor current-voltage characteristics of some novel perovskite ionic nanocomposites of Sr0.5, Cu0.4, Y0.1 and Sr0.5, Mn0.5 and their electronic sensor applications. AIP Conference Proceedings 2274, 020006; https://doi.org/10.1063/5.0022453.

  50. Panse, V. R., Choubey, S. R., Pattanaik, A., & Dhoble, S. J. (2020). Combustion synthesis and photoluminescence studies of blue-emitting CaAl12O19:Ce3+ lamp phosphors. Macromolecular Symposium, 393, 2000100. https://doi.org/10.1002/masy.202000100

    Article  Google Scholar 

  51. Adimule, V., Revaigh, M. G., & Adarsha, H. J. (2020). Synthesis and fabrication of Y-doped ZnO nanoparticles and their application as a gas sensor for the detection of ammonia. J. of Materi Eng and Perform, 29, 4586–4596. https://doi.org/10.1007/s11665-020-04979-4

    Article  Google Scholar 

  52. Kianfar, E. (2019). Ethylene to propylene conversion over Ni-W/ZSM-5 catalyst. Russian Journal of Applied Chemistry, 92, 1094–1101. https://doi.org/10.1134/S1070427219080068

    Article  Google Scholar 

  53. Kianfar, E. (2019). Ethylene to propylene over zeolite ZSM-5: Improved catalyst performance by treatment with CuO. Russian Journal of Applied Chemistry, 92, 933–939. https://doi.org/10.1134/S1070427219070085

    Article  Google Scholar 

  54. Kianfar, E., Shirshahi, M., Kianfar, F., et al. (2018). Simultaneous prediction of the density, viscosity and electrical conductivity of pyridinium-based hydrophobic ionic liquids using artificial neural network. SILICON, 10, 2617–2625. https://doi.org/10.1007/s12633-018-9798-z

    Article  Google Scholar 

  55. Salimi, M., Pirouzfar, V., & Kianfar, E. (2017). Novel nanocomposite membranes prepared with PVC/ABS and silica nanoparticles for C2H6/CH4 separation. Polymer Science, Series A, 59, 566–574. https://doi.org/10.1134/S0965545X17040071

    Article  Google Scholar 

  56. Kianfar, F., & Kianfar, E. (2019). Synthesis of isophthalic acid/aluminum nitrate thin film nanocomposite membrane for hard water softening. Journal of Inorganic and Organometallic Polymers, 29, 2176–2185. https://doi.org/10.1007/s10904-019-01177-1

    Article  Google Scholar 

  57. Kianfar, E., Azimikia, R., & Faghih, S. M. (2020). Simple and strong dative attachment of α-diimine nickel (II) catalysts on supports for ethylene polymerization with controlled morphology. Catalysis Letters, 150, 2322–2330. https://doi.org/10.1007/s10562-020-03116-z

    Article  Google Scholar 

  58. Kianfar, E. (2019). Nanozeolites: Synthesized, properties, applications. Journal of Sol-Gel Science and Technology, 91, 415–429. https://doi.org/10.1007/s10971-019-05012-4

    Article  Google Scholar 

  59. Liu, H., & Kianfar, E. (2020). Investigation the synthesis of nano-SAPO-34 catalyst prepared by different templates for MTO process. Catalysis Letters. https://doi.org/10.1007/s10562-020-03333-6

    Article  Google Scholar 

  60. Kianfar E, Salimi M, Hajimirzaee S, Koohestani B (2018) Methanol to gasoline conversion over CuO/ZSM-5 catalyst synthesized using sonochemistry method. Int J Chem Reactor Eng 17

  61. Kianfar, E., Salimi, M., Pirouzfar, V., & Koohestani, B. (2018). Synthesis of modified catalyst and stabilization of CuO/NH4-ZSM-5 for conversion of methanol to gasoline. International Journal of Applied Ceramic Technology, 15, 734–741. https://doi.org/10.1111/ijac.12830

    Article  Google Scholar 

  62. Kianfar, Ehsan, Salimi, Mahmoud, Pirouzfar, Vahid, & Koohestani, Behnam. (2018). Synthesis and modification of zeolite ZSM-5 catalyst with solutions of calcium carbonate (CaCO3) and sodium carbonate (Na2CO3) for methanol to gasoline conversion. International Journal of Chemical Reactor Engineering, 16(7), 20170229. https://doi.org/10.1515/ijcre-2017-0229

    Article  Google Scholar 

  63. Kianfar, Ehsan. (2019). Comparison and assessment of zeolite catalysts performance dimethyl ether and light olefins production through methanol: A review. Reviews in Inorganic Chemistry., 39, 157–177.

    Article  Google Scholar 

  64. Ehsan Kianfar and Mahmoud Salimi .(2020) A review on the production of light olefins from hydrocarbons cracking and methanol conversion: In book: Advances in Chemistry Research, Volume 59: Edition: James C. Taylor Chapter: 1: Publisher: Nova Science Publishers, Inc., NY, USA.

  65. Ehsan Kianfar and Ali Razavi (2020) Zeolite catalyst based selective for the process MTG: A review: In book: Zeolites: Advances in Research and Applications, Edition: Annett Mahler Chapter: 8: Publisher: Nova Science Publishers, Inc., NY, USA.

  66. Ehsan Kianfar, Zeolites (2020) Properties, applications, modification and selectivity: In book: Zeolites: Advances in Research and Applications, Edition: Annett Mahler Chapter: 1: Publisher: Nova Science Publishers, Inc., NY, USA.

  67. Kianfar E, Hajimirzaee S, Musavian SS, Mehr AS (2020) Zeolite-based catalysts for methanol to gasoline process: A review. Microchemical Journal. 104822.

  68. Kianfar, E., Baghernejad, M., & Rahimdashti, Y. (2015). Study synthesis of vanadium oxide nanotubes with two template hexadecylamin and hexylamine. Biological Forum., 7, 1671–1685.

    Google Scholar 

  69. Ehsan kianfar. Synthesizing of vanadium oxide nanotubes using hydrothermal and ultrasonic method. Publisher: Lambert Academic Publishing. 1–80. ISBN: 978–613–9–81541–8(2020).

  70. Kianfar, E., Pirouzfar, V., & Sakhaeinia, H. (2017). An experimental study on absorption/stripping CO2 using mono-ethanol amine hollow fiber membrane contactor. Journal of the Taiwan Institute of Chemical Engineers, 80, 954–962.

    Article  Google Scholar 

  71. Kianfar, E., & Viet, C. (2021). Polymeric membranes on base of PolyMethyl methacrylate for air separation: A review. Journal of Materials Research and Technology., 10, 1437–1461.

    Article  Google Scholar 

  72. Nmousavian, S., Faravar, P., Zarei, Z., Zimikia, R., Monjezi, M. G., & Kianfar, E. (2020). Modeling and simulation absorption of CO2 using hollow fiber membranes (HFM) with mono-ethanol amine with computational fluid dynamics. J. Environ. Chem. Eng., 8(4), 103946.

    Article  Google Scholar 

  73. Yang, Z., Zhang, L., Zhou, Y., Wang, H., Wen, L., & Kianfar, E. (2020). Investigation of effective parameters on SAPO-34 nano catalyst the methanol-to-olefin conversion process: A review. Reviews in Inorganic Chemistry, 40(3), 91–105.

    Article  Google Scholar 

  74. Gao, C., Liao, J., Jingqiong, Lu., Ma, J., & Kianfar, E. (2020). The effect of nanoparticles on gas permeability with polyimide membranes and network hybrid membranes: A review. Reviews in Inorganic Chemistry. https://doi.org/10.1515/revic-2020-0007

    Article  Google Scholar 

  75. Ehsan Kianfar, Mahmoud Salimi, Behnam Koohestani .Zeolite catalyst: A review on the production of light olefins. Publisher: Lambert Academic Publishing. 1–116(2020).ISBN:978–620–3–04259–7.

  76. Ehsan Kianfar,. Investigation on catalysts of “methanol to light olefins”. Publisher: Lambert Academic Publishing. 1–168(2020).ISBN: 978–620–3–19402–9.

  77. Kianfar E (2020). Application of nanotechnology in enhanced recovery oil and gas importance & applications of nanotechnology, MedDocs Publishers. 5, Chapter 3, 16–21.

  78. Kianfar E,. Catalytic properties of nanomaterials and factors affecting it .Importance & Applications of Nanotechnology, MedDocs Publishers. 5, Chapter 4, 22–25(2020).

  79. Kianfar E,. Introducing the application of nanotechnology in lithium-ion battery importance & applications of nanotechnology, MedDocs Publishers. 4, Chapter 4, 1–7(2020).

  80. Ehsan Kianfar; H. Mazaheri. Synthesis of nanocomposite (CAU-10-H) thin-film nanocomposite (TFN) membrane for removal of color from the water. Fine Chemical Engineering, 1, 83–91(2020).

  81. Kianfar, Ehsan, Salimi, Mahmoud, & Koohestani, Behnam. (2020). Methanol to gasoline conversion over CuO / ZSM-5 catalyst synthesized and influence of water on conversion. Fine Chemical Engineering, 1, 75–82.

    Article  Google Scholar 

  82. Kianfar, E. (2020). An experimental study PVDF and PSF hollow fiber membranes for chemical absorption carbon dioxide. Fine Chemical Engineering, 1, 92–103.

    Article  Google Scholar 

  83. Kianfar, Ehsan, & Mafi, Sajjad. (2020). Ionic liquids: properties, application, and synthesis. Fine Chemical Engineering, 2, 22–31.

    Article  Google Scholar 

  84. Faghih, S. M., & Kianfar, E. (2018). Modeling of fluid bed reactor of ethylene dichloride production in Abadan petrochemical based on three-phase hydrodynamic model. International Journal of Chemical Reactor Engineering, 16, 1–14.

    Article  Google Scholar 

  85. Ehsan Kianfar; H. Mazaheri (2020). Methanol to gasoline: A sustainable transport fuel, In book: Advances in Chemistry Research. Edition: James C. Taylor chapter: 4. Publisher: Nova Science Publishers, Inc., NY, USA.66.

  86. Kianfar (2020).“A comparison and assessment on performance of zeolite catalyst based selective for the process methanol to gasoline: A review, “in Advances in Chemistry Research, Chapter 2 (NewYork: Nova Science Publishers, Inc.). 63.

  87. Kianfar, E., Salimi, M., Kianfar, F., et al. (2019). CO2/N2 Separation using polyvinyl chloride iso-phthalic acid/aluminium nitrate nanocomposite membrane. Macromolecular Research, 27, 83–89. https://doi.org/10.1007/s13233-019-7009-4

    Article  Google Scholar 

  88. Ehsan Kianfar (2020). Synthesis of characterization nanoparticles isophthalic acid / aluminum nitrate (CAU-10-H) using method hydrothermal. Advances in Chemistry Research. NY, USA: Nova Science Publishers, Inc.

  89. Ehsan Kianfar (2020). CO2 capture with ionic liquids: A review. Advances in Chemistry Research. Volume 67 Publisher: Nova Science Publishers, Inc., NY, USA.

  90. Ehsan Kianfar. Enhanced light olefins production via methanol dehydration over promoted SAPO-34. Advances in Chemistry Research. Chapter: 4, Nova Science Publishers, Inc., NY, USA.63(2020).

  91. Ehsan Kianfar. Gas hydrate: Applications, structure, formation, separation processes, thermodynamics. Advances in Chemistry Research. Edition: James C. Taylor. Chapter: 8. Publisher: Nova Science Publishers, Inc., NY, USA.62(2020).

  92. Kianfar, M., Kianfar, F., & Kianfar, E. (2016). The effect of nano-composites on the mechanic and morphological characteristics of NBR/PA6 blends. American Journal of Oil and Chemical Technologies, 4(1), 29–44.

    Google Scholar 

  93. Kianfar, F. (2015). Seyed Reza Mahdavi Moghadam1 and Ehsan Kianfar, Energy Optimization of Ilam Gas Refinery Unit 100 by using HYSYS Refinery Software (2015). Indian Journal of Science and Technology, 8(S9), 431–436.

    Google Scholar 

  94. Kianfar, E. (2015). Production and identification of vanadium oxide nanotubes. Indian Journal of Science and Technology, 8(S9), 455–464.

    Article  Google Scholar 

  95. Kianfar, F. (2015). Seyed Reza Mahdavi Moghadam1 and Ehsan Kianfar, Synthesis of Spiro Pyran by using silica-bonded N-propyldiethylenetriamine as recyclable basic catalyst, Indian. Journal of Science and Technology, 8(11), 68669.

    Google Scholar 

  96. Kianfar, E. (2019). Recent advances in synthesis, properties, and applications of vanadium oxide nanotube. Microchemical Journal., 145, 966–978.

    Article  Google Scholar 

  97. Saeed Hajimirzaee, Amin Soleimani Mehr & Ehsan Kianfar (2020). Modified ZSM-5 zeolite for conversion of LPG to aromatics, polycyclic aromatic compounds. DOI: https://doi.org/10.1080/10406638.2020.1833048.

  98. Kianfar, E. (2021). Investigation of the effect of crystallization temperature and time in synthesis of SAPO-34 catalyst for the production of light olefins. Petroleum Chemistry, 61, 527–537. https://doi.org/10.1134/S0965544121050030

    Article  Google Scholar 

  99. Huang, X., Zhu, Y., & Kianfar, E. (2021). Nano Biosensors: Properties, applications and electrochemical techniques. Journal of Materials Research and Technology., 12, 1649–1672. https://doi.org/10.1016/j.jmrt.2021.03.048

    Article  Google Scholar 

  100. Kianfar, E. (2021). Protein nanoparticles in drug delivery: Animal protein, plant proteins and protein cages, albumin nanoparticles. Journal of Nanbiotechnology, 19, 159. https://doi.org/10.1186/s12951-021-00896-3

    Article  Google Scholar 

  101. Kianfar, E. (2021). Magnetic nanoparticles in targeted drug delivery: A review. Journal of Superconductivity and Novel Magnetism. https://doi.org/10.1007/s10948-021-05932-9

    Article  Google Scholar 

  102. Syah, R., Zahar, M., & Kianfar, E. (2021). Nanoreactors: Properties, applications and characterization. International Journal of Chemical Reactor Engineering, 19(10), 981–1007. https://doi.org/10.1515/ijcre-2021-0069

    Article  Google Scholar 

  103. Indah Raya, Hamzah H. Kzar,·Zaid Hameed Mahmoud, ·Alim Al Ayub Ahmed Aygul Z. Ibatova, Ehsan Kianfar (2021) A review of gas sensors based on carbon nanomaterial., Carbon Letters. Doi. https://doi.org/10.1007/s42823-021-00276-9.

  104. Majdi, H. S., Latipov, Z. A., Borisov, V., et al. (2021). Nano and battery anode: A review. Nanoscale Research Letters, 16, 177. https://doi.org/10.1186/s11671-021-03631-x

    Article  Google Scholar 

  105. Dmitry Bokov, Abduladheem Turki Jalil, Supat Chupradit, Wanich Suksatan, Mohammad Javed Ansari, Iman H. Shewael, Gabdrakhman H. Valiev, Ehsan Kianfar (2021). "Nanomaterial by sol-gel method: Synthesis and application", Advances in Materials Science and Engineering, vol. 2021, Article ID 5102014, 21 pages, . https://doi.org/10.1155/2021/5102014.

  106. Jasim, S. A., Kadhim, M. M., KN, V., et al. (2022). Molecular junctions: Introduction and physical foundations, nanoelectrical conductivity and electronic structure and charge transfer in organic molecular junctions. Braz J Phys, 52, 31. https://doi.org/10.1007/s13538-021-01033-z

    Article  Google Scholar 

  107. Pathare, P. G., Tekale, S. U., Damale, M. G., Sangshetti, J. N., Shaikh, R. U., Kótai, L., & Silaev, R. P. P. (2020). Pyridine and benzoisothiazole based pyrazolines: Synthesis, characterization, biological activity, molecular docking and admet study. EUROPEAN CHEMICAL BULLETIN, 9(1), 10–21.

    Article  Google Scholar 

  108. Hassan, S. S., Kamel, A. H., Hashem, H. M., & Bary, E. A. (2020). Drug delivery systems between metal, liposome, and polymer-based nanomedicine: A review. EUROPEAN CHEMICAL BULLETIN, 9(3), 91–102.

    Article  Google Scholar 

  109. Mikhailov, O., & Chachkov, D. (2020). Novel oxidation degree–Zn+ 3 In the macrocyclic compound with trans-di [benzo] porphyrazine and fluoride ligand: Quantum-chemical consideration. EUROPEAN CHEMICAL BULLETIN, 9(7), 160–163.

    Article  Google Scholar 

  110. Bhale, S. P., Yadav, A. R., Pathare, P. G., Tekale, S. U., Franguelli, F. P., Kótai, L., & Pawar, R. P. (2020). Synthesis, characterization and antimicrobial activity of transition metal complexes of 4-[(2-hydroxy-4-methoxyphenyl) methyleneamino]-2, 4-dihydro-3h-1, 2, 4-triazole-3-thione. European Chemical Bulletin, 9(12), 430–435.

    Article  Google Scholar 

  111. Chachkov, D. V., & Mikhailov, O. V. (2020). DFT study on the relative stability of isomeric macrocyclic metal chelates of divalent 4d-element ions with tetradentate (NSSN)-and (NNNN)-“template” ligands. European Chemical Bulletin, 9(10), 329–334.

    Article  Google Scholar 

  112. Bakhtadze, V., Mosidze, V., Machaladze, T., Kharabadze, N., Lochoshvili, D., Pajishvili, M., & Mdivani, N. (2020). Activity of Pd-MnOx/cordierite (Mg, Fe) 2Al4Si5O18) catalyst for carbon monoxide oxidation. EUROPEAN CHEMICAL BULLETIN, 9(2), 75–77.

  113. Sonar, J. P., Pardeshi, S. D., Dokhe, S. A., Kharat, K. R., Zine, A. M., Kótai, L., & Thore, S. N. (2020). Synthesis and anti-proliferative screening of new thiazole compounds. EUROPEAN CHEMICAL BULLETIN, 9(5), 132–137.

  114. Chupradit, S., Jalil, A. T., Enina, Y., Neganov, D. A., Alhassan, M. S., Aravindhan, S., & Davarpanah, A. (2021). Use of organic and copper-based nanoparticles on the turbulator installment in a shell tube heat exchanger: A CFD-based simulation approach by using nanofluids. Journal of Nanomaterials, 2021.

  115. Zeng, K., Hachem, K., Kuznetsova, M., Chupradit, S., Su, C. H., Nguyen, H. C., & El-Shafay, A. S. (2021). Molecular dynamic simulation and artificial intelligence of lead ions removal from aqueous solution using magnetic-ash-graphene oxide nanocomposite. Journal of Molecular Liquids, 118290.

  116. Chen, Heng, Dmitry Bokov, Supat Chupradit, Maboud Hekmatifar, Mustafa Z. Mahmoud, Roozbeh Sabetvand, Jinying Duan, and Davood Toghraie. "Combustion process of nanofluids consisting of oxygen molecules and aluminum nanoparticles in a copper nanochannel using molecular dynamics simulation." Case Studies in Thermal Engineering 28 (2021): 101628.

  117. Al-Shawi, S. G., Andreevna Alekhina, N., Aravindhan, S., Thangavelu, L., Elena, A., Viktorovna Kartamysheva, N., & Rafkatovna Zakieva, R. (2021). Synthesis of NiO nanoparticles and sulfur, and nitrogen co doped-graphene quantum dots/nio nanocomposites for antibacterial application. Journal of Nanostructures, 11(1), 181–188.

    Google Scholar 

  118. Hutapea, S., Ghazi Al-Shawi, S., Chen, T. C., You, X., Bokov, D., Abdelbasset, W. K., & Suksatan, W. (2021). Study on food preservation materials based on nano-particle reagents. Food Science and Technology.

  119. Panchal, H., Sadasivuni, K. K., Ahmed, A. A. A., Hishan, S. S., Doranehgard, M. H., Essa, F. A., ... & Khalid, M. (2021). Graphite powder mixed with black paint on the absorber plate of the solar still to enhance yield: An experimental investigation. Desalination, 520, 115349.

  120. Chen, T. C., Rajiman, R., Elveny, M., Guerrero, J. W. G., Lawal, A. I., Dwijendra, N. K. A., & Zhu, Y. (2021). Engineering of novel Fe-based bulk metallic glasses using a machine learning-based approach. Arabian Journal for Science and Engineering, 46(12), 12417–12425. https://doi.org/10.1007/s13369-021-05966-0)

Download references

Acknowledgements

The authors acknowledge the Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran, and the Young Researchers and Elite Club, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran. The authors acknowledge the support of the Deanship of Scientific Research at Prince Sattam bin Abdulaziz University.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

“I wrote to you in regard to your question about naming some people in my article, I must point out that in some cases, help was sought from people and it was necessary to mention the names of these people in order to maintain professional ethics in research issues.”

Therefore, on this basis:Mohammad Javed Ansari, Mustafa M. Kadhim, and Baydaa Abed Hussein: investigation, concept and design, experimental studies, writing—original draft, reviewing, and editing, Holya A. Lafta, Ehsan kianfar: investigation, concept and design, data curation, conceptualization, writing—original draft, reviewing, and editing.

Corresponding author

Correspondence to Ehsan Kianfar.

Ethics declarations

Conflict of Interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, M.J., Kadhim, M.M., Hussein, B.A. et al. Synthesis and Stability of Magnetic Nanoparticles. BioNanoSci. 12, 627–638 (2022). https://doi.org/10.1007/s12668-022-00947-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-022-00947-5

Keywords

Navigation